Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282902

RESUMO

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) outcomes due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, diabetes, chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health & disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 outcomes (with 71 mild, 61 moderate, and 27 severe patients) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multivariate regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid {beta} peptide, {beta} catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe elderly COVID-19 patients. Follow-up analysis using binomial regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies indicated a significantly increased likelihood of developing a severe COVID-19 phenotype, presenting a synergistic effect on worsening COVID-19 outcomes. These findings provide new key insights to explain why elderly patients less favorable outcomes have than young individuals, suggesting new associations of distinct autoantibody levels with disease severity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271057

RESUMO

The SARS-CoV-2 infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a wide spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients, in a cohort of 248 individuals, of which171 were COVID-19 patients (74 with mild, 65 moderate, and 32 with severe disease) and 77were healthy controls. Dysregulated autoantibody serum levels, characterized mainly by elevated concentrations, occurred mostly in patients with moderate or severe COVID-19 infection, and was accompanied by a progressive disruption of physiologic IgG and IgA autoantibody signatures. A similar perturbation was found in patients with anosmia. Notably, autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations, being both indicated by random forest classification as strong predictors of COVID-19 outcome, together with age. Moreover, higher levels of autoantibodies (mainly IgGs) were seen in the elderly with severe disease compared with young COVID-19 patients with severe disease. These findings suggest that the SARS-CoV-2 infection induces a broader loss of self-tolerance than previously thought, providing new ideas for therapeutic interventions.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270607

RESUMO

Factors affecting functional antibody responses in solid organ transplant recipients (SOTRs) to current SARS-CoV2 vaccines are not well understood. Here, we measured vaccine-induced neutralizing activities against the D614G-CoV2 baseline virus and eight variants, including Omicron, in a panel of CoV2 infected- (n=13) and uninfected- (n=63) vaccinated kidney and heart transplant recipients. In the CoV2 uninfected-vaccinated subset, only 19% and 35% of two and three-dose vaccinated recipients respectively possessed minimally protective neutralizing plasma antibody titers (IC50>1:50) against D614G. In contrast, all of the CoV2 infected-vaccinated SOTRs who received two vaccine doses possessed titers exceeding minimal protection; 12/13 exhibiting strong protection (IC50>1:600) against D614G with minimal increases provided by a third dose. Omicron was the most resistant variant: only 10% of CoV2 uninfected-vaccinated SOTRs reached the minimally protective neutralization titer, while 76% of CoV2 infected-vaccinated SOTRs exceeded this value. These results indicate that prior infection and vaccination can induce highly protective antibody responses in many SOTRs, and identify important factors (shorter time since transplantation, prednisone administration, and African American ethnicity) that limit these responses. Overall, these results suggest factors to consider in establishing optimum COVID-19 vaccination strategies in these cohorts.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262385

RESUMO

The coronavirus disease 2019 (COVID-19) can evolve to clinical manifestations resembling systemic autoimmune diseases, with the presence of autoantibodies that are still poorly characterized. To address this issue, we performed a cross-sectional study of 246 individuals to determine whether autoantibodies targeting G protein-coupled receptors (GPCRs) and renin-angiotensin system (RAS)-related molecules were associated with COVID-19-related clinical outcomes. Moderate and severe patients exhibited the highest autoantibody levels, relative to both healthy controls and patients with mild COVID-19 symptoms. Random Forest, a machine learning model, ranked anti-GPCR autoantibodies targeting downstream molecules in the RAS signaling pathway such as the angiotensin II type 1 and Mas receptor, and the chemokine receptor CXCR3 as the three strongest predictors of severe disease. Moreover, while the autoantibody network signatures were relatively conserved in patients with mild COVID-19 compared to healthy controls, they were disrupted in moderate and most perturbed in severe patients. Our data indicate that the relationship between autoantibodies targeting GPCRs and RAS-related molecules associates with the clinical severity of COVID-19, suggesting novel molecular pathways for therapeutic interventions.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432977

RESUMO

Unbiased antibody profiling can identify the targets of an immune reaction. A number of likely pathogenic autoreactive antibodies have been associated with life-threatening SARS-CoV-2 infection; yet, many additional autoantibodies likely remain unknown. Here we present Molecular Indexing of Proteins by Self Assembly (MIPSA), a technique that produces ORFeome-scale libraries of proteins covalently coupled to uniquely identifying DNA barcodes for analysis by sequencing. We used MIPSA to profile circulating autoantibodies from 55 patients with severe COVID-19 against 11,076 DNA-barcoded proteins of the human ORFeome library. MIPSA identified previously known autoreactivities, and also detected undescribed neutralizing interferon lambda 3 (IFN-{lambda}3) autoantibodies. At-risk individuals with anti-IFN-{lambda}3 antibodies may benefit from interferon supplementation therapies, such as those currently undergoing clinical evaluation. One-Sentence SummaryMolecular Indexing of Proteins by Self Assembly (MIPSA) identifies neutralizing IFNL3 autoantibodies in patients with severe COVID-19. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=144 SRC="FIGDIR/small/432977v1_ufig1.gif" ALT="Figure 1"> View larger version (25K): org.highwire.dtl.DTLVardef@a3c55aorg.highwire.dtl.DTLVardef@1f1c840org.highwire.dtl.DTLVardef@920bc7org.highwire.dtl.DTLVardef@43633e_HPS_FORMAT_FIGEXP M_FIG C_FIG

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252149

RESUMO

We evaluated the durability of IgG responses specific to SARS-CoV-2 nucleocapsid (N), receptor binding domain (RBD), and spike (S) antigens in saliva up to 8 months after RT-PCR-confirmed COVID-19 using a multiplex salivary assay. We estimated a half-life of 64 days (d) (95% CI: 49, 80 d) for N, 100 d for RBD (95% CI: 58, 141 d), and 148 d (95% CI: 62, 238 d) for S IgG responses in saliva, consistent with half-life estimates previously reported in blood. Saliva can serve as an alternative to blood to monitor humoral immune responses on a large scale following SARS-CoV-2 infection and vaccination for surveillance and assessment of population immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...