Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 297: 120675, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885886

RESUMO

The synchronization between the speech envelope and neural activity in auditory regions, referred to as cortical tracking of speech (CTS), plays a key role in speech processing. The method selected for extracting the envelope is a crucial step in CTS measurement, and the absence of a consensus on best practices among the various methods can influence analysis outcomes and interpretation. Here, we systematically compare five standard envelope extraction methods the absolute value of Hilbert transform (absHilbert), gammatone filterbanks, heuristic approach, Bark scale, and vocalic energy), analyzing their impact on the CTS. We present performance metrics for each method based on the recording of brain activity from participants listening to speech in clear and noisy conditions, utilizing intracranial EEG, MEG and EEG data. As expected, we observed significant CTS in temporal brain regions below 10 Hz across all datasets, regardless of the extraction methods. In general, the gammatone filterbanks approach consistently demonstrated superior performance compared to other methods. Results from our study can guide scientists in the field to make informed decisions about the optimal analysis to extract the CTS, contributing to advancing the understanding of the neuronal mechanisms implicated in CTS.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Magnetoencefalografia/métodos , Eletroencefalografia/métodos , Feminino , Adulto , Masculino , Fala/fisiologia , Adulto Jovem , Córtex Auditivo/fisiologia , Eletrocorticografia/métodos
2.
Heliyon ; 9(7): e17974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539141

RESUMO

The analysis and processing of electrocardiogram (ECG) signals is a vital step in the diagnosis of cardiovascular disease. ECG offers a non-invasive and risk-free method for monitoring the electrical activity of the heart that can assist in predicting and diagnosing heart diseases. The manual interpretation of the ECG signals, however, can be challenging and time-consuming even for experts. Machine learning techniques are increasingly being utilized to support the research and development of automatic ECG classification, which has emerged as a prominent area of study. In this paper, we propose a deep neural network model with residual blocks (DNN-RB) to classify cardiac cycles into six ECG beat classes. The MIT-BIH dataset was used to validate the model resulting in a test accuracy of 99.51%, average sensitivity of 99.7%, and average specificity of 98.2%. The DNN-RB method has achieved higher accuracy than other state-of-the-art algorithms tested on the same dataset. The proposed method is effective in the automatic classification of ECG signals and can be used for both clinical and out-of-hospital monitoring and classification combined with a single-lead mobile ECG device. The method has also been integrated into a web application designed to accept digital ECG beats as input for analyses and to display diagnostic results.

3.
Brain Behav ; 13(8): e3176, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624638

RESUMO

INTRODUCTION: The motor-related bioelectric brain activity of healthy young and old subjects was studied to understand the effect of aging on motor execution. A visually cued finger tapping movement paradigm and high-density EEG were used to examine the time and frequency characteristics. METHODS: Twenty-two young and 22 healthy elderly adults participated in the study. Repeated trials of left and right index finger movements were recorded with a 128-channel EEG. Event-Related Spectral Perturbation (ERSP), Inter Trial Coherence (ITC), and Functional Connectivity were computed and compared between the age groups. RESULTS: An age-dependent theta and alpha band ERSP decrease was observed over the frontal-midline area. Decrease of beta band ERSP was found over the ipsilateral central-parietal regions. Significant ITC differences were found in the delta and theta bands between old and young subjects over the contralateral parietal-occipital areas. The spatial extent of increased ITC values was larger in old subjects. The movement execution of older subjects showed higher global efficiency in the delta and theta bands, and higher local efficiency and node strengths in the delta, theta, alpha, and beta bands. CONCLUSION: As functional compensation of aging, elderly motor networks involve more nonmotor, parietal-occipital, and frontal areas, with higher global and local efficiency, node strength. ERSP and ITC changes seem to be sensitive and complementary biomarkers of age-related motor execution.


Assuntos
Envelhecimento , Encéfalo , Adulto , Idoso , Humanos , Sinais (Psicologia) , Eletroencefalografia , Dedos
4.
Brain Sci ; 9(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817120

RESUMO

Electroencephalography (EEG) signals are frequently contaminated with unwanted electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively in manual and automatic methods to remove artifacts. By decomposing the signals into neural and artifactual components and artifact components can be eliminated before signal reconstruction. Unfortunately, removing entire components may result in losing important neural information present in the component and eventually may distort the spectral characteristics of the reconstructed signals. An alternative approach is to correct artifacts within the independent components instead of rejecting the entire component, for which wavelet transform based decomposition methods have been used with good results. An improved, fully automatic wavelet-based component correction method is presented for EOG artifact removal that corrects EOG components selectively, i.e., within EOG activity regions only, leaving other parts of the component untouched. In addition, the method does not rely on reference EOG channels. The results show that the proposed method outperforms other component rejection and wavelet-based EOG removal methods in its accuracy both in the time and the spectral domain. The proposed new method represents an important step towards the development of accurate, reliable and automatic EOG artifact removal methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA