Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140175

RESUMO

Creating an effective and safe vaccine is critical to fighting the coronavirus infection successfully. Several types of COVID-19 vaccines exist, including inactivated, live attenuated, recombinant, synthetic peptide, virus-like particle-based, DNA and mRNA-based, and sub-unit vaccines containing purified immunogenic viral proteins. However, the scale and speed at which COVID-19 is spreading demonstrate a global public demand for an effective prophylaxis that must be supplied more. The developed products promise a bright future for SARS-CoV-2 prevention; however, evidence of safety and immunogenicity is mandatory before any vaccine can be produced. In this paper, we report on the results of our work examining the safety, toxicity, immunizing dose choice, and immunogenicity of QazCoVac-P, a Kazakhstan-made sub-unit vaccine for COVID-19. First, we looked into the product's safety profile by assessing its pyrogenicity in vaccinated rabbit models and using the LAL (limulus amebocyte lysate) test. We examined the vaccine's acute and sub-chronic toxicity on BALB/c mice and rats. The vaccine did not cause clinically significant toxicity-related changes or symptoms in our toxicity experiments. Finally, we performed a double immunization of mice, ferrets, Syrian hamsters, and rhesus macaques (Macaca mulatta). We used ELISA to measure antibody titers with the maximum mean geometric titer of antibodies in the animals' blood sera totaling approximately 8 log2. The results of this and other studies warrant recommending the QazCoVac-P vaccine for clinical trials.

2.
J Genet Eng Biotechnol ; 21(1): 99, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823960

RESUMO

BACKGROUND: Bovine Tuberculosis is a respiratory disease caused by the pathogen Mycobacterium bovis (M. bovis) that infects cattle. Though rare, this disease can also affect humans, as well as domestic and wild animals, making it a serious concern. Therefore, searching for alternative and new vaccines with high efficiency and safety is the main goal in bovine tuberculosis prophylaxis. New vaccines, known as vector vaccines, have the potential to become safe and effective alternatives to the traditional BCG vaccine. In this study, two major immunodominant proteins of M. bovis Esat-6 and TB10.4 were utilized to create a vector vaccine for bovine tuberculosis. METHODS: The Esat-6 and TB10.4 genes were amplified by PCR. The amplified and purified PCR products were sequenced by the Sanger method. Assembly and multiple alignments of amplicon nucleotides were carried out in the MEGA 11 software. RESULT: Two genes of the local strain 0078-M. bovis-8/RIBSP were sequenced. The nucleotide sequences were deposited in the GenBank database. Comparative analysis of the nucleotide sequences of the ESAT-6 and TB10.4 genes established 100% identity of the compared strains of Mycobacterium. CONCLUSION: Through the use of phylogenetic analysis, it has been confirmed that the amplified genes are related to the mycobacteria genus. This discovery allows the development of a vector vaccine against bovine tuberculosis utilising these genes.

3.
Pathogens ; 11(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297263

RESUMO

Ticks carry and transmit a wide variety of pathogens (bacteria, viruses and protozoa) that pose a threat to humans and animals worldwide. The purpose of this work was to study ticks collected in different regions of Kazakhstan for the carriage of various pathogens. The collected ticks were examined by PCR for the carriage of various pathogens. A total of 3341 tick samples parasitizing three animal species (cattle, sheep and horses) were collected at eight regions of Kazakhstan. Eight tick species were found infesting animals: Dermacentor marginatus (28.08%), Hyalomma asiaticum (21.28%), Hyalomma anatolicum (17.18%), Dermacentor reticulatus (2.01%), Ixodes ricinus (3.35%), Ixodes persulcatus (0.33%), Hyalomma scupense (12.87%) and Hyalomma marginatum (14.90%). Ticks collected from livestock animals were examined for the pathogen spectrum of transmissible infections to determine the degree of their infection. Four pathogen DNAs (lumpy skin disease virus (LSDV), Coxiella burnetti, Teileria annulata, and Babesia caballi) were detected by PCR in Dermacentor marginatus, Hyalomma asiaticum, Hyalomma scupense, Hyalomma anatolicum. The infection of ticks Dermacentor marginatus and Hyalomma asiaticum collected on cattle in the West Kazakhstan region with LSDV was 14.28% and 5.71%, respectively. Coxiella burnetti was found in the ticks Dermacentor marginatus (31.91%) in the Turkestan region and Hyalomma anatolicum (52.63%) in the Zhambyl region. Theileria annulata was found in ticks Hyalomma scupense (7.32%) and Dermacentor marginatus (6.10%) from cattle in the Turkestan region. Babesia caballi was isolated only from the species Hyalomma scupense (17.14%) in the Turkestan region. There were no PCR-positive tick samples collected from sheep. RNA/DNAs of tick-borne encephalitis virus (TBEV), African swine fever virus (ASFV), Hantavirus hemorrhagic fever with renal syndrome (HFRS), and chlamydia pathogens were not found in ticks. The new data give a better understanding of the epidemiology of tick-borne pathogens and the possibility of the emergence of tick-borne animal diseases in Kazakhstan.

4.
Vaccines (Basel) ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298570

RESUMO

Vaccination with live attenuated vaccines is a key element in the prevention of lumpy skin disease. The mechanism of virus attenuation by long-term passaging in sensitive systems remains unclear. Targeted inactivation of virulence genes is the most promising way to obtain attenuated viruses. Four virulence genes in the genome of the lumpy skin disease virus (LSDV) Dermatitis nodulares/2016/Atyrau/KZ were sequentially knocked out by homologous recombination under conditions of temporary dominant selection. The recombinant LSDV Atyrau-5BJN(IL18) with a knockout of the LSDV005, LSDV008, LSDV066 and LSDV142 genes remained genetically stable for ten passages and efficiently replicated in cells of lamb testicles, saiga kidney and bovine kidney. In vivo experiments with cattle have shown that injection of the LSDV Atyrau-5BJN(IL18) at a high dose does not cause disease in animals or other deviations from the physiological norm. Immunization of cattle with the LSDV Atyrau-5BJN(IL18) induced the production of virus-neutralizing antibodies in titers of 4-5 log2. The challenge did not cause disease in immunized animals. The knockout of four virulence genes resulted in attenuation of the virulent LSDV without loss of immunogenicity. The recombinant LSDV Atyrau-5BJN(IL18) is safe for clinical use, immunogenic and protects animals from infection with the virulent LSDV.

5.
Virus Res ; 320: 198898, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995240

RESUMO

An active surveillance study of avian influenza viruses (AIVs) in wild birds was carried out in Kazakhstan in 2018-2019. In total, 866 samples were collected from wild birds and analyzed for influenza viruses using molecular and virological tests. Genome segments of Asian, European, and Australian lineages were detected in 25 (4.6%) out of 541 waterfowl samples positive for subtype H3N8, and in two (0.6%) out of 325 H3N8 positive samples from terrestrial birds. No highly pathogenic avian influenza virus (AIV) was detected. The results indicated transmission of closely related strains or identical subtypes of AIVs by a flock-unit of migratory birds or annual cyclical pattern of subtype dominance. The simultaneous circulation of genome segments of the Asian, European and Australian genetic lineages of H3N8 AIVs in wild birds in Kazakhstan indicated the important role of Central Asia as a transmission hub of AI viruses linking the East Asian migratory flyways with European flyways and vice versa.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A , Influenza Aviária , Orthomyxoviridae , Animais , Animais Selvagens , Austrália , Aves , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Cazaquistão/epidemiologia , Filogenia
6.
Microbiol Resour Announc ; 11(7): e0038022, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727014

RESUMO

Here, we present the coding sequence of the genome of the recombinant lumpy skin disease virus (LSDV) Atyrau-5BJN(IL18), obtained by knocking out four genes in the genome of a virulent field LSDV isolate. Genome sequencing confirmed the deletion of genes and the insertion of a foreign sequence in the viral genome.

7.
Front Microbiol ; 12: 720437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646246

RESUMO

In March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus. To develop the vaccine, a virus grown in Vero cell culture was used, which was inactivated with formaldehyde, purified, concentrated, sterilized by filtration, and then adsorbed on aluminum hydroxide gel particles. The formula virus and adjuvant in buffer saline solution were used as the vaccine. The safety and protective effectiveness of the developed vaccine were studied in Syrian hamsters. The results of the studies showed the absolute safety of the candidate vaccine in the Syrian hamsters. When studying the protective effectiveness, the developed vaccine with an immunizing dose of 5 µg/dose specific antigen protected animals from a wild homologous virus at a dose of 104.5 TCID50 /mL. The candidate vaccine induced the formation of virus-neutralizing antibodies in vaccinated hamsters at titers of 3.3 ± 1.45 log2 to 7.25 ± 0.78 log2, and these antibodies were retained for 6 months (observation period) for the indicated titers. No viral replication was detected in vaccinated hamsters, protected against the development of acute pneumonia, and ensured 100% survival of the animals. Further, no replicative virus was isolated from the lungs of vaccinated animals. However, a virulent virus was isolated from the lungs of unvaccinated animals at relatively high titers, reaching 4.5 ± 0.7 log TCID50/mL. After challenge infection, 100% of unvaccinated hamsters showed clinical symptoms (stress state, passivity, tousled coat, decreased body temperature, and body weight, and the development of acute pneumonia), with 25 ± 5% dying. These findings pave the way for testing the candidate vaccine in clinical human trials.

8.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32217669

RESUMO

We report the near-complete genome sequence of an influenza H5N1 virus strain isolated from a dead swan on the southeastern Caspian seashore in 2006. The results of the surface protein HA phylogenetic analysis showed that the A/swan/Mangystau/3/2006 virus belongs to the EA-nonGsGD clade.

9.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139571

RESUMO

Here, we present the complete genome sequence of a highly pathogenic strain of avian influenza A virus/domestic goose/Pavlodar/1/05 (H5N1) (GS/1/05), which belongs to clade 2.2. This strain of the influenza virus was isolated in northern Kazakhstan in 2005.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...