Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 11(1): 2996, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533060

RESUMO

Multiple myeloma (MM) is a plasma-cell neoplasm that is treated with high-dose chemotherapy, autologous stem cell transplant (ASCT) and long-term immunomodulatory drug (IMiD) maintenance. The presence of somatic mutations in the peripheral blood is termed clonal hematopoiesis of indeterminate potential (CHIP) and is associated with adverse outcomes. Targeted sequencing of the stem cell product from 629 MM patients treated by ASCT at the Dana-Farber Cancer Institute (2003-2011) detects CHIP in 136/629 patients (21.6%). The most commonly mutated genes are DNMT3A, TET2, TP53, ASXL1 and PPM1D. Twenty-one from fifty-six patients (3.3%) receiving first-line IMiD maintenance develop a therapy-related myeloid neoplasm (TMN). However, regardless of CHIP status, the use of IMiD maintenance associates with improved PFS and OS. In those not receiving IMiD maintenance, CHIP is associated with decreased overall survival (OS) (HR:1.34, p = 0.02) and progression free survival (PFS) (HR:1.45, p < 0.001) due to an increase in MM progression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Mieloma Múltiplo/terapia , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas/genética , Transplante Autólogo , Proteína Supressora de Tumor p53/genética , Adulto Jovem
2.
Oncotarget ; 9(71): 33549-33561, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323898

RESUMO

Nervous system tumors represent some of the highly aggressive cancers in both children and adults, particularly neuroblastoma and glioblastoma. Many studies focused on the pathogenic role of the Akt pathway and the mechanistic target of Rapamycin (mTOR) complex in mediating the progression of various types of cancer, which designates the Akt/mTOR signaling pathway as a master regulator for cancer. Current studies are also elucidating the mechanisms of cancer stem cells (CSCs) in replenishing tumors and explicating the strong correlation between the Akt/mTOR pathway and CSC biology. This instigates the development of novel treatments that target CSCs via inhibiting this pathway to prevent recurrence in various cancer subtypes. In accordance, neuroblastoma and glioblastoma tumors are believed to originate from stem/progenitor cells or dedifferentiated mature neural/glial cells transformed into CSCs, which warrants targeting this subpopulation of CSCs in these tumors. In our study, Triciribine and Rapamycin were used to assess the role of inhibiting two different points of the Akt/mTOR pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) human cell lines and their CSCs. We showed that both drugs minimally decrease the survival of U251 and SH-SY5Y cells in a 2D model, while this effect was much more pronounced in a 3D culture model. Triciribine and Rapamycin decreased migratory abilities of both cell lines and decreased their sphere-forming units (SFU) by extinguishing their CSC populations. Together, we concluded that Rapamycin and Triciribine proved to be effective in the in vitro treatment of glioblastoma and neuroblastoma, by targeting their CSC population.

3.
Front Neurosci ; 9: 442, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635517

RESUMO

BACKGROUND: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. METHODS: Metformin and 9-ß-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) cell lines. RESULTS: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. CONCLUSION: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

5.
PLoS One ; 10(6): e0128601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047500

RESUMO

Traumatic Brain Injury (TBI) is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS) in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R), in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurosporine (STS) to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occurring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted through B2R and partly via B1R. Finally, a neuroproteomics approach was conducted to find relevant proteins associated to STS and KKS in PC12 cells. Neuroproteomics results confirmed the presence of an inflammatory response leading to cell death during apoptosis-mediated STS treatment; however, a "survival" capacity was shown following inhibition of B2R coupled with STS treatment. Our data suggest that B2R is a key player in the inflammatory pathway following STS-mediated apoptosis in PC12 cells and its inhibition may represent a potential therapeutic tool in TBI.


Assuntos
Inibidores Enzimáticos/toxicidade , Sistema Calicreína-Cinina/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estaurosporina/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Células PC12 , Proteômica , Ratos , Receptor B1 da Bradicinina/análise , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/imunologia , Receptor B2 da Bradicinina/análise , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/imunologia , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional
6.
J Infect Public Health ; 8(1): 20-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25154919

RESUMO

Antibiotic-resistant bacteria has become a global phenomenon, mainly due to the inappropriate use of antibiotics. There are no studies in Lebanon to assess the public's knowledge, attitudes and practices (KAP) of antibiotic usage. A cross-sectional study was carried out using a self-administered questionnaire completed by a random convenience sample of 500 people. Nearly half of the respondents (46.1%) demonstrated moderate knowledge levels, while 40.6% demonstrated moderate attitudes. Although 80.2% knew that antibiotics are anti-bacterial, 73.5% did not know that antibiotics are not anti-viral. Moreover, 68.3% of respondents reported consuming antibiotics 1-3 times per year, while 22.4% consumed antibiotics on their own accord. Approximately 66.7% realized that abusing antibiotics could lead to resistance. Participant knowledge and attitudes were significantly associated with monthly family income, educational level, place of residency, having medical insurance, working in the health sector or having a relative working in the health sector. Nation-wide awareness campaigns targeting susceptible demographics should be initiated.


Assuntos
Antibacterianos/uso terapêutico , Conhecimentos, Atitudes e Prática em Saúde , Uso Indevido de Medicamentos sob Prescrição/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/tratamento farmacológico , Estudos Transversais , Resistência Microbiana a Medicamentos , Feminino , Humanos , Líbano , Masculino , Pessoa de Meia-Idade , Uso Indevido de Medicamentos sob Prescrição/efeitos adversos , Uso Indevido de Medicamentos sob Prescrição/prevenção & controle , Inquéritos e Questionários , Adulto Jovem
7.
Curr Neurol Neurosci Rep ; 15(1): 505, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394858

RESUMO

Stroke is the second leading cause of death worldwide and a major cause of long-term severe disability representing a global health burden and one of the highly researched medical conditions. Nanostructured material synthesis and engineering have been recently developed and have been largely integrated into many fields including medicine. Recent studies have shown that nanoparticles might be a valuable tool in stroke. Different types, shapes, and sizes of nanoparticles have been used for molecular/biomarker profiling and imaging to help in early diagnosis and prevention of stroke and for drug/RNA delivery for improved treatment and neuroprotection. However, these promising applications have limitations, including cytotoxicity, which hindered their adoption into clinical use. Future research is warranted to fully develop and effectively and safely translate nanoparticles for stroke diagnosis and treatment into the clinic. This work will discuss the emerging role of nanotheragnostics in stroke diagnosis and treatment applications.


Assuntos
Nanopartículas/uso terapêutico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Sistemas de Liberação de Medicamentos , Humanos , Hemorragias Intracranianas/diagnóstico , Hemorragias Intracranianas/tratamento farmacológico , Hemorragias Intracranianas/patologia , Hemorragias Intracranianas/fisiopatologia , Nanopartículas/efeitos adversos , Fármacos Neuroprotetores/administração & dosagem , Prognóstico , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...