Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part B Rev ; 28(6): 1209-1222, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35451330

RESUMO

Organoids, which are multicellular clusters with similar physiological functions to living organs, have gained increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. There is evidence that the extracellular microenvironment can regulate organoid quality. The extracellular microenvironment consists of soluble bioactive molecules, extracellular matrix, and biofluid flow. However, few efforts have been made to discuss the microenvironment optimal to engineer specific organoids. Therefore, this review article examines the extent to which engineered extracellular microenvironments regulate organoid quality. First, we summarize the natural tissue and organ's unique chemical and mechanical properties, guiding researchers to design an extracellular microenvironment used for organoid engineering. Then, we summarize how the microenvironments contribute to the formation and growth of the brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are also discussed in detail. Impact statement Organoids, which are multicellular clusters with similar physiological function to living organs, have been gaining increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. This review article focuses on recent efforts to engineer the extracellular microenvironment in organoid research. We summarized the natural organ's microenvironment, which informs researchers of key factors that can influence organoid formation. Then, we summarize how these microenvironmental controls significantly contribute to the formation and growth of the corresponding brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are discussed in detail, including extracellular matrix choice and properties, culture methods, and the evaluation of the morphology and functionality through imaging and biochemical analysis.


Assuntos
Matriz Extracelular , Organoides , Humanos , Organoides/fisiologia , Matriz Extracelular/química , Bioengenharia/métodos , Fígado
2.
Environ Sci Technol ; 54(21): 13797-13806, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32975940

RESUMO

Endocrine disrupting chemicals (EDC) include synthetic compounds that mimic the structure or function of natural hormones. While most studies utilize live embryos or primary cells from adult fish, these cells rapidly lose functionality when cultured on plastic or glass substrates coated with extracellular matrix proteins. This study hypothesizes that the softness of a matrix with adhered fish cells can regulate the intercellular organization and physiological function of engineered hepatoids during EDC exposure. We scrutinized this hypothesis by culturing zebrafish hepatocytes (ZF-L) on collagen-based hydrogels with controlled elastic moduli by examining morphology, urea production, and intracellular oxidative stress of hepatoids exposed to 17ß-estradiol. Interestingly, the softer gel drove cells to form a cell sheet with a canaliculi-like structure compared to its stiffer gel counterpart. The hepatoids cultured on the softer gel exhibited more active urea production upon exposure to 17ß-estradiol and displayed faster recovery of intracellular reactive oxygen species level confirmed by gradient light interference microscopy (GLIM), a live-cell imaging technique. These results are broadly useful to improve screening and understanding of potential EDC impacts on aquatic organisms and human health.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Disruptores Endócrinos/toxicidade , Estradiol/farmacologia , Hepatócitos , Humanos , Espécies Reativas de Oxigênio/farmacologia , Poluentes Químicos da Água/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...