Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 733, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286991

RESUMO

Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.


Assuntos
Arabidopsis , Lotus , Humanos , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética
2.
Plant Cell ; 34(5): 1844-1862, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35146519

RESUMO

Legumes have adaptive mechanisms that regulate nodulation in response to the amount of nitrogen in the soil. In Lotus japonicus, two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP4 and LjNLP1, play pivotal roles in the negative regulation of nodulation by controlling the expression of symbiotic genes in high nitrate conditions. Despite an improved understanding of the molecular basis for regulating nodulation, how nitrate plays a role in the signaling pathway to negatively regulate this process is largely unknown. Here, we show that nitrate transport via NITRATE TRANSPORTER 2.1 (LjNRT2.1) is a key step in the NLP signaling pathway to control nodulation. A mutation in the LjNRT2.1 gene attenuates the nitrate-induced control of nodulation. LjNLP1 is necessary and sufficient to induce LjNRT2.1 expression, thereby regulating nitrate uptake/transport. Our data suggest that LjNRT2.1-mediated nitrate uptake/transport is required for LjNLP4 nuclear localization and induction/repression of symbiotic genes. We further show that LjNIN, a positive regulator of nodulation, counteracts the LjNLP1-dependent induction of LjNRT2.1 expression, which is linked to a reduction in nitrate uptake. These findings suggest a plant strategy in which nitrogen acquisition switches from obtaining nitrogen from the soil to symbiotic nitrogen fixation.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Solo , Simbiose/fisiologia
3.
Plant Cell ; 33(7): 2340-2359, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33826745

RESUMO

Leguminous plants produce nodules for nitrogen fixation; however, nodule production incurs an energy cost. Therefore, as an adaptive strategy, leguminous plants halt root nodule development when sufficient amounts of nitrogen nutrients, such as nitrate, are present in the environment. Although legume NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors have recently been identified, understanding how nodulation is controlled by nitrate, a fundamental question for nitrate-mediated transcriptional regulation of symbiotic genes, remains elusive. Here, we show that two Lotus japonicus NLPs, NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1)/LjNLP4 and NRSYM2/LjNLP1, have overlapping functions in the nitrate-induced control of nodulation and act as master regulators for nitrate-dependent gene expression. We further identify candidate target genes of LjNLP4 by combining transcriptome analysis with a DNA affinity purification-seq approach. We then demonstrate that LjNLP4 and LjNIN, a key nodulation-specific regulator and paralog of LjNLP4, have different DNA-binding specificities. Moreover, LjNLP4-LjNIN dimerization underlies LjNLP4-mediated bifunctional transcriptional regulation. These data provide a basic principle for how nitrate controls nodulation through positive and negative regulation of symbiotic genes.


Assuntos
Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nodulação/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Simbiose/fisiologia , Fatores de Transcrição/genética
4.
Plant Signal Behav ; 15(3): 1733814, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100606

RESUMO

Legumes possess the autoregulation of nodulation (AON) pathway which is responsible for maintaining optimal root nodule number. In Lotus japonicus, AON comprises the CLE-HAR1-TML module, which plays an essential role in transmitting signals via root-to-shoot-to-root long-distance signaling. In addition to AON's principal role of negatively regulating nodule number, a recent study revealed another in the systemic control of rhizobial infection. Nitrate also negatively regulates the pleiotropic phases of legume-Rhizobium symbioses, including rhizobial infection and nodule number. Nitrate signaling has recently been shown to use AON components such as CLE-RS2 and HAR1 to control nodule number. Here we consider the role of a loss-of-function mutation in CLE-RS1, -RS2 and TML in rhizobial infection in relation to nitrate. Our results agree with previous findings and support the hypothesis that AON is required for the control of rhizobial infection but not for its nitrate-induced control. Furthermore, we confirm that the tml mutants exhibit nitrate sensitivity that differs from that of cle-rs2 and har1. Hence, while the nitrate-induced control mechanism of nodule number uses AON components, an unknown pathway specific to nitrate may exist downstream of HAR1, acting in parallel with the HAR1> TML pathway.


Assuntos
Nitratos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Nódulos Radiculares de Plantas/efeitos dos fármacos , Simbiose/efeitos dos fármacos
6.
PLoS Genet ; 15(1): e1007865, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605473

RESUMO

Nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) form symbioses with plant roots and these are established by precise regulation of symbiont accommodation within host plant cells. In model legumes such as Lotus japonicus and Medicago truncatula, rhizobia enter into roots through an intracellular invasion system that depends on the formation of a root-hair infection thread (IT). While IT-mediated intracellular rhizobia invasion is thought to be the most evolutionarily derived invasion system, some studies have indicated that a basal intercellular invasion system can replace it when some nodulation-related factors are genetically modified. In addition, intracellular rhizobia accommodation is suggested to have a similar mechanism as AMF accommodation. Nevertheless, our understanding of the underlying genetic mechanisms is incomplete. Here we identify a L. japonicus nodulation-deficient mutant, with a mutation in the LACK OF SYMBIONT ACCOMMODATION (LAN) gene, in which root-hair IT formation is strongly reduced, but intercellular rhizobial invasion eventually results in functional nodule formation. LjLAN encodes a protein that is homologous to Arabidopsis MEDIATOR 2/29/32 possibly acting as a subunit of a Mediator complex, a multiprotein complex required for gene transcription. We also show that LjLAN acts in parallel with a signaling pathway including LjCYCLOPS. In addition, the lan mutation drastically reduces the colonization levels of AMF. Taken together, our data provide a new factor that has a common role in symbiont accommodation process during root nodule and AM symbiosis.


Assuntos
Lotus/genética , Medicago truncatula/genética , Micorrizas/crescimento & desenvolvimento , Simbiose/genética , Regulação da Expressão Gênica de Plantas/genética , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Mutação , Micorrizas/genética , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia
7.
Nat Commun ; 9(1): 499, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29403008

RESUMO

Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.


Assuntos
Lotus/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Acetileno/química , Núcleo Celular/metabolismo , Tamanho Celular , Fabaceae , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Nodulação , Plantas Geneticamente Modificadas , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose
8.
Development ; 141(12): 2441-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850853

RESUMO

Many leguminous plants have a unique ability to reset and alter the fate of differentiated root cortical cells to form new organs of nitrogen-fixing root nodules during legume-Rhizobium symbiosis. Recent genetic studies on the role of cytokinin signaling reveal that activation of cytokinin signaling is crucial to the nodule organogenesis process. However, the genetic mechanism underlying the initiation of nodule organogenesis is poorly understood due to the low number of genes that have been identified. Here, we have identified a novel nodulation-deficient mutant named vagrant infection thread 1 (vag1) after suppressor mutant screening of spontaneous nodule formation 2, a cytokinin receptor gain-of-function mutant in Lotus japonicus. The VAG1 gene encodes a protein that is putatively orthologous to Arabidopsis ROOT HAIRLESS 1/HYPOCOTYL 7, a component of the plant DNA topoisomerase VI that is involved in the control of endoreduplication. Nodule phenotype of the vag1 mutant shows that VAG1 is required for the ploidy-dependent cell growth of rhizobial-infected cells. Furthermore, VAG1 mediates the onset of endoreduplication in cortical cells during early nodule development, which may be essential for the initiation of cortical cell proliferation that leads to nodule primordium formation. In addition, cortical infection is severely impaired in the vag1 mutants, whereas the epidermal infection threads formation is normal. This suggests that the VAG1-mediated endoreduplication of cortical cells may be required for the guidance of symbiotic bacteria to host meristematic cells.


Assuntos
Proteínas Arqueais/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Endorreduplicação/fisiologia , Regulação da Expressão Gênica de Plantas , Lotus/embriologia , Lotus/fisiologia , Proteínas Quinases/fisiologia , Proteínas Arqueais/genética , Bactérias , Linhagem da Célula , Citocininas/metabolismo , DNA Topoisomerases Tipo II/genética , Genes de Plantas , Histidina Quinase , Lotus/microbiologia , Meristema/embriologia , Meristema/microbiologia , Mutação , Fenótipo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais , Simbiose
9.
Plant J ; 78(6): 927-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654985

RESUMO

Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Triptofano Transaminase/fisiologia , Sequência de Aminoácidos , Transporte Biológico/genética , Clonagem Molecular , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Triptofano Transaminase/química , Triptofano Transaminase/genética
10.
Front Plant Sci ; 4: 42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483805

RESUMO

The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS HISTIDINE KINASE 1 and M. truncatula CYTOKININ RESPONSE 1 have brought a greater understanding of how activation of cytokinin signaling is crucial to the initiation of nodule primordia. Recent studies have also started to shed light on the roles of auxin in the regulation of nodule development. Here, we review the history and recent progress of research into the roles of cytokinin and auxin, and their possible interactions, in nodule development.

11.
Plant Signal Behav ; 8(3): e23359, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23299335

RESUMO

In leguminous plants, rhizobial infection of the epidermis triggers proliferation of cortical cells to form a nodule primordium. Recent studies have demonstrated that two classic phytohormones, cytokinin and auxin, have important functions in nodulation. The identification of these functions in Lotus japonicus was facilitated by use of the spontaneous nodule formation 2 (snf2) mutation of the putative cytokinin receptor LOTUS HISTIDINE KINASE 1 (LHK1). Analyses using snf2 demonstrated that constitutive activation of cytokinin signaling causes formation of spontaneous nodule-like structures in the absence of rhizobia and that auxin responses are induced in proliferating cortical cells during such spontaneous nodule development. Thus, cytokinin signaling positively regulates the auxin response. In the present study, we further investigated the induction of the auxin response using a gain-of-function mutation of Ca(2+)/calmodulin-dependent protein kinase (CCaMK) that causes spontaneous nodule formation. We demonstrate that CCaMK(T265D)-mediated spontaneous nodule development is accompanied by a localized auxin response. Thus, a localized auxin response at the site of an incipient nodule primordium is essential for nodule organogenesis.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Lotus/metabolismo , Nodulação , Proteínas Quinases/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Simbiose , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Citocininas/genética , Genes de Plantas , Lotus/genética , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Rhizobium , Transdução de Sinais
12.
Development ; 139(21): 3997-4006, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23048184

RESUMO

Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differentiation. Although recent genetic studies have established how activation of cytokinin signaling is crucial to the control of cortical cell differentiation, the physiological pathways through which auxin might act in nodule development are poorly characterized. Here, we report the detailed patterns of auxin accumulation during nodule development in Lotus japonicus. Our analyses showed that auxin predominantly accumulates in dividing cortical cells and that NODULE INCEPTION, a key transcription factor in nodule development, positively regulates this accumulation. Additionally, we found that auxin accumulation is inhibited by a systemic negative regulatory mechanism termed autoregulation of nodulation (AON). Analysis of the constitutive activation of LjCLE-RS genes, which encode putative root-derived signals that function in AON, in combination with the determination of auxin accumulation patterns in proliferating cortical cells, indicated that activation of LjCLE-RS genes blocks the progress of further cortical cell division, probably through controlling auxin accumulation. Our data provide evidence for the existence of a novel fine-tuning mechanism that controls nodule development in a cortical cell stage-dependent manner.


Assuntos
Ácidos Indolacéticos/metabolismo , Lotus/citologia , Lotus/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/metabolismo , Divisão Celular/fisiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética , Nodulação/fisiologia
13.
Plant J ; 58(5): 724-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19207212

RESUMO

Numerous genes are involved in the regulation of plant development, including those that regulate floral homeotic genes, We identified two recessive allelic rice mutants, open beak-1 (opb-1) and opb-2, which exhibited pleiotropic defects in leaf morphogenesis, inflorescence architecture, and floral organ identity. Abnormal cell proliferation was observed in the leaves and spikelets, and ectopic or overexpression of several class 1 knox genes was detected; thus, the abnormal cell proliferation in opb mutants is probably caused by ectopic class 1 knox gene expression. The opb mutants also had defects in floral organ identity, resulting in the development of mosaic organs, including gluminous lodicules, staminoid lodicules, and pistiloid stamens. These results, together with the reduced expression of a class B gene, indicate that OPB positively regulates the expression of class B genes. Map-based cloning revealed that OPB encodes a transcription factor that is orthologous to the Arabidopsis JAGGED gene and is expressed in leaf primordia, inflorescence meristem, rachis branch meristems, floral meristem, and floral organ primordia. Taken together, our data suggest that the OPB gene affects cellular proliferation and floral organ identity through the regulation of class 1 knox genes and floral homeotic genes.


Assuntos
Proteínas de Homeodomínio/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Proliferação de Células , Mapeamento Cromossômico , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Homeodomínio/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/genética , Dedos de Zinco
14.
Plant J ; 51(6): 1030-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17666027

RESUMO

Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.


Assuntos
Diferenciação Celular , Proteínas F-Box/fisiologia , Meristema/genética , Oryza/citologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Proteínas F-Box/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Meristema/citologia , Dados de Sequência Molecular , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Alinhamento de Sequência
15.
Jpn J Physiol ; 55(3): 191-203, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16143049

RESUMO

The effects of electroacupuncture stimulation (EAS) of the hind paw and the back on the mesenteric microhemodynamics in anesthetized rats were investigated using an intravital microscope system. Red blood cell (RBC) velocity in the mesenteric arterioles was measured by the dual-sensor method developed by the authors. Electrical stimulation was applied using two acupuncture needles inserted into the skin and the underlying muscles of the hind paw and the dorsal Th13-L1 level area. The hind-paw EAS evoked intensity-dependent pressor responses and increase responses in RBC velocity in mesenteric precapillary arterioles, while the back EAS evoked depressor responses and decrease responses in RBC velocity. Heart rate showed increase responses accompanying EAS either on the hind paw or the back. The pressor responses and increase responses in RBC velocity in mesenteric precapillary arterioles accompanying the hind paw EAS were abolished by an intravenous administration of alpha-adrenergic receptor antagonist (phenoxybenzamine; POB), and the tachycardiac responses were abolished by administration of beta-adrenergic receptor antagonist (propranolol). Occasional but notable reflex vasoconstrictions in the mesenteric terminal arteriole were induced by EAS either on the hind paw or the back. These vasoconstrictive responses were not affected by the administration of POB. The present study directly demonstrated that hemodynamic changes at the level of precapillary arterioles accompanying EAS either on the hind paw or the back mainly depend on the changes of systemic arterial pressure regardless of stimulus current intensities. Moreover, the results in the present study suggest some receptors other than alpha-adrenergic receptor might be involved in the mechanism of EAS-induced vasoconstriction in the mesenteric arteriole.


Assuntos
Eletroacupuntura , Hemodinâmica , Músculo Esquelético/irrigação sanguínea , Circulação Esplâncnica/fisiologia , Pontos de Acupuntura , Antagonistas Adrenérgicos alfa/administração & dosagem , Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Animais , Dorso , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Membro Posterior , Injeções Intravenosas , Masculino , Microcirculação/fisiologia , Músculo Esquelético/inervação , Fenoxibenzamina/administração & dosagem , Fenoxibenzamina/farmacologia , Propranolol/administração & dosagem , Propranolol/farmacologia , Ratos , Ratos Wistar , Circulação Esplâncnica/efeitos dos fármacos , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Sistema Vasomotor/fisiologia
16.
Neurosci Lett ; 333(2): 136-40, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12419499

RESUMO

In anesthesized rats, the effects of electrical stimulation (ES) to the saphenous nerve on the microcirculation of the gracilis muscle were assessed through the measurement of two different hemodynamic parameters: (a). the muscle blood flow (MBF) using a laser Doppler flowmeter; and (b). the changes in diameter of the muscle arterioles observed directly using an intravital microscope system. Ipsilateral ES (5 V, 20 Hz, for 30 s) produced increases in MBF and mean arterial pressure (47+/-10% and 18+/-5%) over the baseline, while no significant changes in MBF were observed in the contralateral muscle. Neither selective nor simultaneous alpha- and beta-adrenergic blockade altered the increases in MBF induced by ipsilateral ES. The arteriolar diameter was found to increase by 38.9+/-5% following ipsilateral ES. This response in diameter was abolished after the topical application of a calcitonin gene-related peptide receptor antagonist (CGRP(8-37)). Contralateral ES produced a decrease in arteriolar diameter by 26+/-14%. Thus, ipsilateral nerve ES produced vasodilative responses in the muscle accompanied by increases in MBF independently of the sympathetic activity. Furthermore, CGRP was found directly involved in the reflex neural regulation of the muscle microcirculation, which suggests the participation of an axon reflex mechanism.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Microcirculação/fisiologia , Músculo Esquelético/irrigação sanguínea , Fragmentos de Peptídeos/antagonistas & inibidores , Vasodilatação/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Estimulação Elétrica , Lateralidade Funcional , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Fluxometria por Laser-Doppler , Masculino , Microcirculação/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fentolamina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Endogâmicos BB , Fluxo Sanguíneo Regional/fisiologia , Vasodilatação/efeitos dos fármacos
17.
Jpn J Physiol ; 52(3): 257-65, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12230802

RESUMO

The effects of electrical stimulation of the dorsal skin area on the mesenteric arterioles were investigated in anesthetized rats by the use of an intravital microscope-television system. Changes in the diameter of the mesenteric precapillary arterioles (10-40 microm in diameter) were measured with an image processor. Blood flow velocity in the mesenteric precapillary arterioles was monitored by the dual sensor method developed by the authors. Electrical stimulation was performed through two platinum electrodes placed at the right dorsal Th5-12 level skin area by the use of an electrical stimulator (0.2 ms, 20 Hz). Continuous stimulation lasting for 30 s (1-10 mA) and intermittent stimulation lasting for 10 min (3 mA) were applied. The pressor response following the depressor response was induced by a stimulus current above 8 mA. The decrease in mesenteric blood flow velocity was induced by stimulus current above 10 mA. These responses were abolished by lidocaine injection into the subcutaneous area where the electrodes were attached. No significant change in arteriolar diameter or heart rate were induced by the stimulation for 30 s. Electrical stimulation of the skin for 10 min evoked a decrease in the diameter of arterioles (-3.4 +/- 2%, p < 0.01, n = 12). In the adrenalectomized group, electrical stimulation of the skin for 10 min elicited a slight increase in the diameter (1.1 +/- 0.5%, n = 6). It is therefore suggested that electrical stimulation of the skin for 30 s reflexly evoked decreases in MAP and in blood flow velocity, and that the constriction of the mesenteric precapillary arterioles induced by the stimulation for 10 min was mediated by humoral adrenaline and noradrenaline released by somato-adrenal medullary reflex.


Assuntos
Fenômenos Fisiológicos da Pele , Circulação Esplâncnica/fisiologia , Adrenalectomia , Animais , Arteríolas/fisiologia , Pressão Sanguínea/fisiologia , Estimulação Elétrica , Hemodinâmica/fisiologia , Masculino , Microcirculação/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo , Vasoconstrição/fisiologia
18.
Int Rev Cytol ; 218: 1-35, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12199516

RESUMO

Homeobox genes are known as transcriptional regulators that are involved in various aspects of developmental processes in many organisms. In plants, many types of homeobox genes have been identified, and mutational or expression pattern analyses of these genes have indicated the involvement of several classes of homeobox genes in developmental processes. The fundamental body plan of plants is established during embryogenesis, whereas morphogenetic events in the shoot apical meristem (SAM) continue after embryogenesis. Knotted1-like homeobox genes (knox genes) are preferentially expressed in both the SAM and the immature embryo. Therefore, these genes are considered to be key regulators of plant morphogenesis. In this review, we discuss the regulatory role of knox genes and other types of homeobox genes in SAM establishment during embryogenesis and SAM maintenance after embryogenesis, mainly in rice.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Homeobox/genética , Plantas/embriologia , Sementes/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/embriologia , Meristema/genética , Mutação/genética , Oryza/citologia , Oryza/embriologia , Oryza/genética , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Sementes/citologia , Sementes/genética
19.
Auton Neurosci ; 97(2): 103-9, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12132642

RESUMO

Recent reports have focused on the mechanisms of the action of electro-acupuncture stimulation (EAS) in the regulation of blood flow to different tissues. In the knee joint, blood flow is known to be modulated mainly by sympathetic postganglionic fibers, but recently the release or induction of nitric oxide (NO) synthesis in response to electrical stimulation has also been suggested. Therefore, a direct observation of the microcirculation is needed to further understand the mechanism by which blood flow is regulated by somatic afferent stimulation. In the present study, the effects of EAS to the vastus medialis muscle on systemic hemodynamics and the knee joint microcirculation were observed in vivo using a real-time confocal laser-scanning microscope system (CLMS). Electrical stimulation (5 mA, 0.5 ms, 5 Hz) was applied for 30 min using a pair of acupuncture needles introduced into the vastus medialis muscle. To clarify a plausible involvement of NO in the responses to EAS, the stimulus was applied either in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME). Stimulation to either the muscle or the skin of the thigh after blockade of neuromuscular transmission was performed to determine the involvement of muscle contraction during EAS treatment. The changes in mean arterial pressure (MAP) and diameter of the arterioles supplying the knee joint were monitored continuously until 60 min poststimulus. Significant and persistent increases in arteriolar diameter by 26 +/- 6% and MAP by 17 +/- 2%, respectively, were observed after EAS to the muscle. Electro-acupuncture to the vastus medialis in the presence of L-NAME produced a strong decrease in diameter of the knee joint arterioles by -38 +/- 14% under the baseline with a simultaneous increase of 35 +/- 5% in MAP. EAS to the skin did not produce changes in arteriolar diameter while a slight increase in MAP by 12 +/- 6% over the baseline occurred after the stimulus. EAS to the muscle after neuromuscular blockade did not produce significant changes in diameter, while an increase in MAP by 24 +/- 8% was still observed, which facts suggest that the muscle contraction is required to produce vasodilatation. These responses suggest that a dynamic balance between the autonomic nervous system and the release of NO is the primary mechanism mediating the EAS effects on knee joint microcirculation.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Eletroacupuntura/métodos , Articulação do Joelho/irrigação sanguínea , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Reflexo/fisiologia , Vias Aferentes/fisiologia , Anestesia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Inibidores Enzimáticos/farmacologia , Articulação do Joelho/fisiologia , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional/fisiologia , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
20.
Plant J ; 30(2): 189-201, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12000455

RESUMO

The Arabidopsis PINHEAD/ZWILLE (PNH/ZLL) gene is thought to play an important role in the formation of the shoot apical meristem (SAM) and in leaf adaxial cell specification. To investigate the molecular mechanisms of rice development, we have isolated a rice homologue of PNH/ZLL, called OsPNH1. Around the SAM, OsPNH1 was strongly expressed in developing leaf primordia, specifically in the presumptive vascular domains, developing vascular tissues, a few cell-layers of the adaxial region, and future bundle sheath extension cells. In the SAM, only weak expression was observed in the central region, whereas strong expression was detected in the mid-vein region of leaf founder cells in the peripheral SAM domain. We produced transgenic rice plants containing the antisense OsPNH1 strand. The antisense OsPNH1 plants developed malformed leaves with an altered vascular arrangement and abnormal internal structure. These plants also formed an aberrant SAM with reduced KNOX gene expression. We examined the subcellular localization of the OsPNH1-GFP fusion protein and found that it was localized in the cytoplasm. On the basis of these observations, we propose that OsPNH1 functions not only in SAM maintenance as previously thought, but also in leaf formation through vascular development.


Assuntos
Meristema/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hibridização In Situ , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Cebolas , Oryza/genética , Fenótipo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...