Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 823: 137654, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38281695

RESUMO

The α7 neuronal nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the development of Parkinson's disease (PD) therapeutics. α-Synuclein (α-Syn), a principal component of Lewy bodies (cytoplasmic inclusions), is a major contributor to PD pathophysiology. Previous studies have demonstrated that activating α7 nAChR protects against nigrostriatal dopamine degeneration in acute and chronic PD animal models induced by 6-hydroxydopamine and rotenone, respectively. In the present study, we investigated the effects of PNU282987, a selective α7 nAChR agonist, against α-Syn-induced neurotoxicity in α-SynWT-, α-SynA30P-, and α-SynE46K-N2a cells. PNU282987 exhibited substantial neuroprotection against both wild-type and mutant-type α-Syn-induced toxicity. Furthermore, PNU282987 promoted transcription factor EB activity and reduced intracellular α-Syn protein levels through autophagy induction. These results highlight the therapeutic potential of α7 nAChR activation in diseases characterized by α-Syn aggregation, such as PD.


Assuntos
Compostos Bicíclicos com Pontes , Síndromes Neurotóxicas , Doença de Parkinson , Receptores Nicotínicos , Animais , alfa-Sinucleína/metabolismo , Receptor Nicotínico de Acetilcolina alfa7 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Benzamidas/farmacologia , Agonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo
2.
Front Pharmacol ; 13: 805379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185565

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, characterized by the loss of upper and lower motor neurons, for which an effective treatment has yet to be developed. Previous reports have shown that excessive oxidative stress, related to mitochondrial dysfunction and the accumulation of misfolding protein, contributes to ALS pathology. In terms of treatment, it remains necessary to identify effective medicines for multiple therapeutic targets and have additive effects against several disorders. In this study, we investigated stem cells from human exfoliated deciduous teeth (SHED), which release many factors, such as neurotrophic factors and cytokines, and are applied to treat neurological diseases. Specifically, we examined whether SHED-conditioned medium (CM), i.e., the serum-free culture supernatant of SHED, reduced mutant SOD1-induced intracellular aggregates and neurotoxicity. We found that SHED-CM significantly suppressed the mutant SOD1-induced intracellular aggregates and neurotoxicity. The neuroprotective effects of SHED-CM are partly related to heat shock protein and the activation of insulin-like growth factor-1 receptor. SHED-CM also had a protective effect on induced pluripotent stem cell-derived motor neurons. Moreover, SHED-CM was effective against not only familial ALS but also sporadic ALS. Overall, these results suggest that SHED-CM could be a promising treatment for slowing the progression of ALS.

3.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768913

RESUMO

Aggregation of α-synuclein (α-Syn) is implicated in the pathogenesis of Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Therefore, the removal of α-Syn aggregation could lead to the development of many new therapeutic agents for neurodegenerative diseases. In the present study, we succeeded in generating a new α-Syn stably expressing cell line using a piggyBac transposon system to investigate the neuroprotective effect of the flavonoid kaempferol on α-Syn toxicity. We found that kaempferol provided significant protection against α-Syn-related neurotoxicity. Furthermore, kaempferol induced autophagy through an increase in the biogenesis of lysosomes by inducing the expression of transcription factor EB and reducing the accumulation of α-Syn; thus, kaempferol prevented neuronal cell death. Moreover, kaempferol directly blocked the amyloid fibril formation of α-Syn. These results support the therapeutic potential of kaempferol in diseases such as synucleinopathies that are characterized by α-Syn aggregates.


Assuntos
Amiloide/efeitos dos fármacos , Autofagia , Quempferóis/farmacologia , Neuroblastoma/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Substâncias Protetoras/farmacologia , alfa-Sinucleína/toxicidade , Amiloide/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
4.
Sci Rep ; 10(1): 22157, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335227

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on ALS-associated mutant copper-zinc superoxide dismutase 1 (SOD1) aggregates in motor neurons remains unclear. In the present study, we examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. We found that α7 nAChR activation by PNU282987, a selective agonist of α7 nAChR, exhibited significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus. These results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.


Assuntos
Neurônios/metabolismo , Superóxido Dismutase-1/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cálcio/metabolismo , Humanos , Espaço Intracelular , Lisossomos/metabolismo , Mutação , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores , Agregados Proteicos , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Superóxido Dismutase-1/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas
5.
Front Neurosci ; 14: 407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457568

RESUMO

To evaluate the therapeutic potential of stem cells for neurodegenerative diseases, emphasis should be placed on clarifying the characteristics of the various types of stem cells. Among stem cells, dental pulp stem cells (DPSCs) are a cell population that is rich in cell proliferation and multipotency. It has been reported that transplantation of DPSCs has protective effects against models of neurodegenerative diseases. The protective effects are not only through differentiation into the target cell type for the disease but are also related to trophic factors released from DPSCs. Recently, it has been reported that serum-free culture supernatant of dental pulp stem cell-conditioned medium (DPCM) contains various trophic factors and cytokines and that DPCM is effective for models of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS). Moreover, the use of stem cells from human exfoliated deciduous teeth (SHEDs) has been considered. SHEDs are derived from deciduous teeth that have been disposed of as medical waste. SHEDs have higher differentiation capacity and proliferation ability than DPSCs. In addition, the serum-free culture supernatant of SHEDs (SHED-CM) contains more trophic factors, cytokines, and biometals than DPCM and also promotes neuroprotection. The neuroprotective effect of DPSCs, including those from deciduous teeth, will be used as the seeds of therapeutic drugs for neurodegenerative diseases. SHEDs will be used for further cell therapy of neurodegenerative diseases in the future. In this paper, we focused on the characteristics of DPSCs and their potential for neurodegenerative diseases.

6.
Int J Mol Sci ; 20(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208129

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis (EBGP) prevented mutant copper-zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity. This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of autophagy and provides a potential therapeutic approach for ALS.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Propionatos/farmacologia , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/genética , Linhagem Celular , Ácidos Cumáricos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA