Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 308(Pt 2): 136349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084836

RESUMO

Chiral polychlorinated biphenyls (PCBs) have atropisomers that have different axial chiralities and exist as racemic mixtures. However, biochemical processes often result in the unequal accumulation of these atropisomers in organisms. This phenomenon leads to enantiospecific toxicity enhancement or reduction because either of the atropisomers mainly affects toxicity expression. Enantioselective accumulation is caused by cytochrome P450 (CYP, P450) monooxygenases, especially the CYP2B subfamilies. Therefore, this study investigates the metabolism of a chiral PCB in vitro. Both atropisomers isolated from racemic 2,2',3,4,4',5',6-heptachlorobiphenyl (CB183) were metabolized by human CYP2B6, but not rat CYP2B1. This may be due to the difference in the size of the substrate-binding cavities of CYP2B6 and CYP2B1. The stable accommodation of (-)-CB183 in the cavity without any steric hindrance explained the preferential metabolism of (-)-CB183 compared to (+)-CB183. Two hydroxylated metabolites, 3'-OH-CB183 and 5-OH-CB183, were identified. The docking study showed that the 3'-position of the trichlorophenyl ring closely approaches the heme of CYP2B6. To our knowledge, this is the first study to elucidate the structural basis of chiral PCB metabolism by P450 isozymes. These results will help promote the precise toxicity evaluation of chiral PCBs and provide an explanation of the structural basis of chiral PCB metabolism.


Assuntos
Bifenilos Policlorados , Animais , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme , Humanos , Hidroxilação , Isoenzimas/metabolismo , Bifenilos Policlorados/química , Ratos , Estereoisomerismo
2.
Environ Sci Technol ; 56(14): 10204-10215, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35801261

RESUMO

Although polychlorinated biphenyls (PCBs) were commercially banned half a century ago, contamination of the environment and organisms by PCBs is still observed. PCBs show high persistence and bioaccumulation, resulting in toxicity. Among PCBs, chiral PCBs with more than three chlorine atoms at the ortho-position exhibit developmental and neurodevelopmental toxicity. Because toxicity is dependent on the atropisomer, atropisomer-specific metabolism is vital in determining toxicity. However, structural information on enantioselective metabolism remains elusive. Cytochrome P450 (CYP, P450) monooxygenases, particularly human CYP2B6 and rat CYP2B1, metabolize separated atropisomers of 2,2',3,6-tetrachlorobiphenyl (CB45) and 2,2',3,4',6-pentachlorobiphenyl (CB91) to dechlorinated and hydroxylated metabolites. Docking studies using human CYP2B6 predict 4'-hydroxy (OH)-CB45 from (aR)-CB45 as a major metabolite of CB45. Di-OH- and dechlorinated OH-metabolites from human CYP2B6 and rat CYP2B1 are also detected. Several hydroxylated metabolites are derived from CB91 by both P450s; 5-OH-CB91 is predicted as a major metabolite. CB91 dechlorination is also detected by identifying 3-OH-CB51. A stable conformation of PCBs in the substrate-binding cavity and close distance to P450 heme are responsible for high metabolizing activities. As hydroxylation and dechlorination change PCB toxicity, this approach helps understand the possible toxicity of chiral PCBs in mammals.


Assuntos
Bifenilos Policlorados , Animais , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidroxilação , Mamíferos/metabolismo , Bifenilos Policlorados/metabolismo , Ratos , Estereoisomerismo
3.
Int J Pharm ; 604: 120770, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111545

RESUMO

The application of time-domain NMR (TD-NMR) analysis to quantify water content in pharmaceutical ingredients is demonstrated. The initial phase of the study employed a range of disintegrants with defined amounts of added water (0-30% of the total weight) as samples; the disintegrants included croscarmellose sodium, corn starch, low-substituted hydroxypropyl cellulose, and crospovidone. After acquisition of the T2 relaxation curves of the samples by TD-NMR measurements, these curves were analyzed by partial least squares (PLS) regression. According to the analysis, accurate and reliable PLS models were created that enabled accurate assessment of water content in the samples. A powder blend consisting of acetaminophen (paracetamol) and tablet excipients was also examined. Both a physical mixture of the powder blend and a wet granule prepared with a high-speed granulator were tested as samples in this study. Precise determination of water content in the powder blend was achieved by using the TD-NMR method. The accuracy of water content determination was equivalent to or better than that of the conventional loss on drying method. TD-NMR analysis samples were measured nondestructively and rapidly with low cost; thus, it could be a powerful quantitative method for determining water content in pharmaceuticals.


Assuntos
Excipientes , Água , Composição de Medicamentos , Pós , Comprimidos
4.
Chem Pharm Bull (Tokyo) ; 67(10): 1144-1151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582634

RESUMO

Definitive screening design (DSD) is a new class of small three-level experimental design that is attracting much attention as a technical tool of a quality by design (QbD) approach. The purpose of this study is to examine the usefulness of DSD for QbD through a pharmaceutical study on the preparation of ethenzamide-containing orally disintegrating tablet. Model tablets were prepared by directly compressing the mixture of the active pharmaceutical ingredient (API) and excipients. The five evaluated factors assigned to DSD were: the contents of API (X1) and lubricant (X2), and the compression force (X3) of the tableting process, the mixing time (X4), and the filling ratio of powder in the V-type mixer (X5). After tablet preparation, hardness and disintegration time were measured. The same experiments were performed by using the conventional design of experiments [i.e., L8 and L16 orthogonal array designs and central composite design (CCD)]. Results showed that DSD successfully clarified how various factors contribute to tablet properties. Moreover, the analysis result from DSD agreed well with those from the L8 and L16 experiments. In additional experiments, response surfaces for tablet properties were created by DSD. Compared with the response surfaces created by CCD, DSD could produce reliable response surfaces for its smaller number of experiments. We conclude that DSD is a powerful tool for implementing pharmaceutical studies including the QbD approach.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Propriedades de Superfície , Comprimidos/administração & dosagem , Comprimidos/química
5.
Chem Pharm Bull (Tokyo) ; 67(3): 271-276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828004

RESUMO

The different states of water incorporated in wet granules were studied by a low-field benchtop 1H-NMR time-domain NMR (TD-NMR) instrument. Wet granules consisting different fillers [cornstarch (CS), microcrystalline cellulose (MCC), and D-mannitol (MAN)] with different water contents were prepared using a high-speed granulator, and then their spin-spin relaxation time (T2) was measured using the NMR relaxation technique. The experimental T2 relaxation curves were analyzed by the two-component curve fitting, and then the individual T2 relaxation behaviors of solid and water in wet granules were identified. According to the observed T2 values, it was confirmed that the molecular mobility of water in CS and MCC granules was more restricted than that in the MAN granule. The state of water appeared to be associated with the drying efficiency and moisture absorption capacity of wet granules. Thus, it was confirmed that the state of water significantly affected the wet granulation process and the characteristics of the resultant granules. In the final phase of this study, the effects of binders on the molecular mobility of water in granulation fluids and wet granules were examined. The state of water in granulation fluids was substantially changed by changing the binders. The difference was still detected in wet granules prepared by addition of these fluids to the fillers. In conclusion, TD-NMR can offer valuable knowledge on wet granulation from the viewpoint of molecular mobility of water.


Assuntos
Composição de Medicamentos/métodos , Preparações Farmacêuticas/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Água/química , Celulose/química , Umidade , Manitol/química , Tecnologia Farmacêutica/métodos , Temperatura
6.
Langmuir ; 34(40): 12093-12099, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30217112

RESUMO

The purpose of the present study is to demonstrate the applicability of magnetic resonance imaging, especially T2 relaxation time mapping, for nondestructive monitoring of the dispersion state of nanoparticles (NPs) in concentrated suspensions. TiO2 15-nm-diameter NPs, for use in sunscreen lotion products, were examined as a test NP. First, this study investigated whether T2 is sensitive to the NP concentration. In experiments with pulsed nuclear magnetic resonance on TiO2 NP suspensions with different organic solvents (ethanol, acetone, and decamethylcyclopentasiloxane), the T2 of each solvent varied in the suspensions according to the NP concentration. This study also confirmed that T2 mapping was effective for visualizing differences in NP concentration. Subsequently, gravitational sedimentation of the test suspensions was investigated. T2 mapping exhibited better detection sensitivity to sedimentation occurring in concentrated suspensions than visual observation, as it enabled the detection of changes in NP distributions that could not be visible to the naked eye. In addition, measurements of backscattered light enabled the full understanding of the dispersion stability of the TiO2 NPs in each solvent. Finally, the present study evaluated the centrifuge sedimentation of a commercial TiO2 NP suspension. T2 mapping clearly showed the complicated sedimentation behavior induced by the centrifugation treatment. The simulated fluid flow was consistent with the particle distribution in the centrifuged sample; thus, the sedimentation was believed to have developed in accordance with the vorticity generated by the centrifugation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...