Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 69(7): 1191-1204, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32144446

RESUMO

Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Hepatocelular/terapia , Carcinoma Pulmonar de Lewis/terapia , Terapia por Estimulação Elétrica/métodos , Morte Celular Imunogênica , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Doc Ophthalmol ; 140(2): 169-180, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31621038

RESUMO

PURPOSE: To determine the electroretinographical and psychophysical parameters that can help to verify patients' complaints of reduced night vision. METHODS: We tested 275 consecutive patients with normal appearing fundi, complaining of visual difficulties at night, using flash electroretinography (ERG) and dark adaptation (DA) test. Two ERG parameters were used to assess a scotopic retinal function: the amplitude of the response to dim blue flash (the rod response) and the b-wave ratio (measured/expected). Dark adaptation was measured with green- and red-light stimuli after exposure to a bright, bleaching light. The psychophysical parameter of night vision was defined as the threshold for detection of the blue-green stimulus that was measured after 40-45 min in complete darkness. RESULTS: Fifty-five patients were excluded from the analysis because of a discrepancy between the two ERG parameters in assessment of scotopic retinal function. The remaining 220 patients were divided into 4 groups: (1) normal ERG and normal DA, (2) subnormal ERG and subnormal DA, (3) normal ERG and subnormal DA and (4) subnormal ERG and normal DA. The ERG and DA tests supported the complaint of visual difficulties at night in 67 patients (group 2), while 34 patients were characterized as having normal scotopic visual function (group 1). The other 119 patients (groups 3 and 4) presented a diagnostic dilemma because one test (ERG or dark adaptation) showed normal scotopic function, while the other indicated subnormal scotopic function. CONCLUSION: Our findings indicate that ERG is an essential, but not sufficient test for verifying patient's complaint on visual difficulties in the dark. We suggest using both electroretinography and psychophysical dark adaptation to test patients complaining of reduced night vision.


Assuntos
Adaptação à Escuridão/fisiologia , Eletrorretinografia , Cegueira Noturna/diagnóstico , Cegueira Noturna/fisiopatologia , Retina/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Visão Noturna/fisiologia , Estimulação Luminosa , Psicofísica , Adulto Jovem
3.
Int J Cancer ; 139(12): 2850-2858, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27561100

RESUMO

Long-term survival rates for advanced ovarian cancer patients have not changed appreciably over the past four decades; therefore, development of new, effective treatment modalities remains a high priority. Tumor Treating Fields (TTFields), a clinically active anticancer modality utilize low-intensity, intermediate frequency, alternating electric fields. The goal of this study was to evaluate the efficacy of combining TTFields with paclitaxel against ovarian cancer cells in vitro and in vivo. In vitro application of TTFields on human ovarian cancer cell lines led to a significant reduction in cell counts as compared to untreated cells. The effect was found to be frequency and intensity dependent. Further reduction in the number of viable cells was achieved when TTFields treatment was combined with paclitaxel. The in vivo effect of the combined treatment was tested in mice orthotopically implanted with MOSE-LTICv cells. In this model, combined treatment led to a significant reduction in tumor luminescence and in tumor weight as compared to untreated mice. The feasibility of effective local delivery of TTFields to the human abdomen was examined using finite element mesh simulations performed using the Sim4life software. These simulations demonstrated that electric fields intensities inside and in the vicinity of the ovaries of a realistic human computational phantom are about 1 and 2 V/cm pk-pk, respectively, which is within the range of intensities required for TTFields effect. These results suggest that prospective clinical investigation of the combination of TTFields and paclitaxel is warranted.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 5: 18046, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26658786

RESUMO

Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.


Assuntos
Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Neoplasias/patologia , Fuso Acromático/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Eletricidade , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Microtúbulos/patologia , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Tubulina (Proteína)/metabolismo
5.
Semin Oncol ; 41 Suppl 6: S35-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25213867

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Common treatment modalities for NSCLC include surgery, radiotherapy, chemotherapy, and, in recent years, the clinical management paradigm has evolved with the advent of targeted therapies. Despite such advances, the impact of systemic therapies for advanced disease remains modest, and as such, the prognosis for patients with NSCLC remains poor. Standard modalities are not without their respective toxicities and there is a clear need to improve both efficacy and safety for current management approaches. Tumor-treating fields (TTFields) are low-intensity, intermediate-frequency alternating electric fields that disrupt proper spindle microtubule arrangement, thereby leading to mitotic arrest and ultimately to cell death. We evaluated the effects of combining TTFields with standard chemotherapeutic agents on several NSCLC cell lines, both in vitro and in vivo. Frequency titration curves demonstrated that the inhibitory effects of TTFields were maximal at 150 kHz for all NSCLC cell lines tested, and that the addition of TTFields to chemotherapy resulted in enhanced treatment efficacy across all cell lines. We investigated the response of Lewis lung carcinoma and KLN205 squamous cell carcinoma in mice treated with TTFields in combination with pemetrexed, cisplatin, or paclitaxel and compared these to the efficacy observed in mice exposed only to the single agents. Combining TTFields with these therapeutic agents enhanced treatment efficacy in comparison with the respective single agents and control groups in all animal models. Together, these findings suggest that combining TTFields therapy with chemotherapy may provide an additive efficacy benefit in the management of NSCLC.


Assuntos
Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Escamosas/terapia , Terapia por Estimulação Elétrica , Neoplasias Pulmonares/terapia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Apoptose , Carcinoma Pulmonar de Lewis/mortalidade , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Cisplatino/administração & dosagem , Terapia Combinada , Glutamatos/administração & dosagem , Guanina/administração & dosagem , Guanina/análogos & derivados , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/administração & dosagem , Pemetrexede , Taxa de Sobrevida , Resultado do Tratamento , Células Tumorais Cultivadas
6.
Pancreatology ; 14(1): 54-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555979

RESUMO

OBJECTIVES: Tumor Treating Fields (TTFields) are a non-invasive cancer treatment modality approved for the treatment of patients with recurrent glioblastoma. The present study determined the efficacy and mechanism of action of TTFields in preclinical models of pancreatic cancer. METHODS: The effect of TTFields in vitro was assessed using cell counts, clonogenic assays, cell cycle analysis and analysis of mitotic figures. The effect in vivo effect was studied in the PC1-0 hamster pancreatic cancer model. RESULTS: Application of TTFields in vitro showed a significant decrease in cell count, an increase in cell volume and reduced clonogenicity. Further analysis demonstrated significant increase in the number of abnormal mitotic figures, as well as a decrease in G2-M cell population. In hamsters with orthotopic pancreatic tumors, TTFields significantly reduced tumor volume accompanied by an increase in the frequency of abnormal mitotic events. TTFields efficacy was enhanced both in vitro and in vivo when combined with chemotherapy. CONCLUSIONS: These results provide the first evidence that TTFields serve as an effective antimitotic treatment in preclinical pancreatic cancer models and have a long term negative effect on cancer cell survival. These results make TTFields an attractive candidate for testing in the treatment of patients with pancreatic cancer.


Assuntos
Mitose/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Animais , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Terapia Combinada , Cricetinae , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Eletricidade , Humanos , Masculino , Mesocricetus , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco , Gencitabina
7.
Clin Exp Metastasis ; 26(7): 633-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19387848

RESUMO

Tumor treating fields (TTFields) are low intensity, intermediate frequency, alternating electric fields used to treat cancerous tumors. This novel treatment modality effectively inhibits the growth of solid tumors in vivo and has shown promise in pilot clinical trials in patients with advanced stage solid tumors. TTFields were tested for their potential to inhibit metastatic spread of solid tumors to the lungs in two animal models: (1) Mice injected with malignant melanoma cells (B16F10) into the tail vein, (2) New Zealand White rabbits implanted with VX-2 tumors within the kidney capsule. Mice and rabbits were treated using two-directional TTFields at 100-200 kHz. Animals were either monitored for survival, or sacrificed for pathological and histological analysis of the lungs. The total number of lung surface metastases and the absolute weight of the lungs were both significantly lower in TTFields treated mice then in sham control mice. TTFields treated rabbits survived longer than sham control animals. This extension in survival was found to be due to an inhibition of metastatic spread, seeding or growth in the lungs of TTFields treated rabbits compared to controls. Histologically, extensive peri- and intra-tumoral immune cell infiltration was seen in TTFields treated rabbits only. These results raise the possibility that in addition to their proven inhibitory effect on the growth of solid tumors, TTFields may also have clinical benefit in the prevention of metastatic spread from primary tumors.


Assuntos
Eletricidade , Neoplasias Pulmonares/secundário , Melanoma/patologia , Metástase Neoplásica/prevenção & controle , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Coelhos
8.
BMC Med Phys ; 9: 1, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19133110

RESUMO

BACKGROUND: The present study explores the efficacy and toxicity of combining a new, non-toxic, cancer treatment modality, termed Tumor Treating Fields (TTFields), with chemotherapeutic treatment in-vitro, in-vivo and in a pilot clinical trial. METHODS: Cell proliferation in culture was studied in human breast carcinoma (MDA-MB-231) and human glioma (U-118) cell lines, exposed to TTFields, paclitaxel, doxorubicin, cyclophosphamide and dacarbazine (DTIC) separately and in combinations. In addition, we studied the effects of combining chemotherapy with TTFields in an animal tumor model and in a pilot clinical trial in recurrent and newly diagnosed GBM patients. RESULTS: The efficacy of TTFields-chemotherapy combination in-vitro was found to be additive with a tendency towards synergism for all drugs and cell lines tested (combination index

9.
Proc Natl Acad Sci U S A ; 104(24): 10152-7, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17551011

RESUMO

We have recently shown that low intensity, intermediate frequency, electric fields inhibit by an anti-microtubule mechanism of action, cancerous cell growth in vitro. Using implanted electrodes, these fields were also shown to inhibit the growth of dermal tumors in mice. The present study extends these findings to additional cell lines [human breast carcinoma; MDA-MB-231, and human non-small-cell lung carcinoma (H1299)] and to animal tumor models (intradermal B16F1 melanoma and intracranial F-98 glioma) using external insulated electrodes. These findings led to the initiation of a pilot clinical trial of the effects of TTFields in 10 patients with recurrent glioblastoma (GBM). Median time to disease progression in these patients was 26.1 weeks and median overall survival was 62.2 weeks. These time to disease progression and OS values are more than double the reported medians of historical control patients. No device-related serious adverse events were seen after >70 months of cumulative treatment in all of the patients. The only device-related side effect seen was a mild to moderate contact dermatitis beneath the field delivering electrodes. We conclude that TTFields are a safe and effective new treatment modality which effectively slows down tumor growth in vitro, in vivo and, as demonstrated here, in human cancer patients.


Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica , Glioblastoma/terapia , Recidiva Local de Neoplasia , Adulto , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Terapia por Estimulação Elétrica/efeitos adversos , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Microeletrodos , Modelos Biológicos , Neoplasias Experimentais/terapia , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Taxa de Sobrevida , Fatores de Tempo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 64(9): 3288-95, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15126372

RESUMO

Low-intensity, intermediate-frequency (100-300 kHz), alternating electric fields, delivered by means of insulated electrodes, were found to have a profound inhibitory effect on the growth rate of a variety of human and rodent tumor cell lines (Patricia C, U-118, U-87, H-1299, MDA231, PC3, B16F1, F-98, C-6, RG2, and CT-26) and malignant tumors in animals. This effect, shown to be nonthermal, selectively affects dividing cells while quiescent cells are left intact. These fields act in two modes: arrest of cell proliferation and destruction of cells while undergoing division. Both effects are demonstrated when such fields are applied for 24 h to cells undergoing mitosis that is oriented roughly along the field direction. The first mode of action is manifested by interference with the proper formation of the mitotic spindle, whereas the second results in rapid disintegration of the dividing cells. Both effects, which are frequency dependent, are consistent with the computed directional forces exerted by these specific fields on charges and dipoles within the dividing cells. In vivo treatment of tumors in C57BL/6 and BALB/c mice (B16F1 and CT-26 syngeneic tumor models, respectively), resulted in significant slowing of tumor growth and extensive destruction of tumor cells within 3-6 days. These findings demonstrate the potential applicability of the described electric fields as a novel therapeutic modality for malignant tumors.


Assuntos
Terapia por Estimulação Elétrica , Neoplasias/patologia , Neoplasias/terapia , Animais , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA