Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4225-4232, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126354

RESUMO

Trajectory surface hopping simulations are performed to better understand the electronic relaxation dynamics of [Fe(bpy)3]2+ in aqueous solution. Specifically, the ultrafast relaxation from the photoexcited singlet metal-to-ligand charge-transfer (MLCT) to the metastable quintet metal-centered (MC) states is simulated through the surface hopping method, where the MLCT and MC states of [Fe(bpy)3]2+ in aqueous solution are computed by using a model electronic Hamiltonian developed previously. As a result, most of the trajectories are interpreted to show the sequential relaxation pathways via the triplet MC states, though some are the direct pathway from MLCT to the quintet MC states. Even though the triplet MC states are involved in the relaxation, the population transfer to the singlet MC ground state is very small, and the population of the quintet MC states reaches more than ∼96%, reasonably consistent with the unity quantum efficiency discussed experimentally.

2.
Phys Chem Chem Phys ; 25(21): 14659-14671, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37051715

RESUMO

This perspective highlights three theoretical and computational methods to capture the coordination self-assembly processes at the molecular level: quantum chemical modeling, molecular dynamics, and reaction network analysis. These methods cover the different scales from the metal-ligand bond to a more global aspect, and approaches that are best suited to understand the coordination self-assembly from different perspectives are introduced. Theoretical and numerical researches based on these methods are not merely ways of interpreting the experimental studies but complementary to them.

3.
Phys Chem Chem Phys ; 23(2): 866-877, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33107507

RESUMO

Herein, we present a systematic computational model to study the electronic states and free energies of a self-assembled multi-metal complex series. By combining the previously developed model Hamiltonian approach for transition-metal complexes and the generalized Born model, the thermodynamics, optimized geometries, and electronic states of the [Pd12L24]24+ nanocage are revealed, together with [PdnLm]2n+ complex series. The effective model Hamiltonian is a theoretical method to obtain the d-electron wavefunction and potential energy including interaction energy between the transition-metal and ligands. In the present improvement, the electronic state on each transition-metal center is focused as a building unit and solved under the whole electronic field of the assembling system. We realize a reliable and systematic treatment of multi-transition-metal complexes with different sizes and charges. Consequently, our model could reproduce binding energies of the [PdnLm]2n+ complex series quantitatively as compared to density functional theory (DFT). Regarding free energy, we revealed that the assembling solute becomes unstable due to the electrostatic interaction, and effects of the solvent and counter anions mainly compensated it. Optimized geometries were also analysed. The local square-planar coordination structures around the palladium centres were characterized in the complex series. The relationships between the entire symmetrical geometries and the local coordination structures are also discussed. Finally, electronic structures of the [Pd12L24]24+ nanocage were well characterized as a single-determinant, where only dx2-y2 is unoccupied due to the ligand-field effect. We also found that the solvent polarized the electronic states of the Pd ions, whereas the counter anion suppressed the polarization. The present method realizes size-independent reliable and rapid computations, and therefore can be expected to further application studies on self-assembly dynamics.

4.
J Comput Chem ; 42(3): 166-179, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33146893

RESUMO

A simple practical method to compute both d-d and metal-to-ligand charge-transfer (MLCT) excited states of iron(II) polypyridyl complexes is proposed for use in simulation studies. Specifically, a model electronic Hamiltonian developed previously for d-d excited states of [Fe(bpy)3 ]2+ is extended to deal with low-lying MLCT excited states simultaneously by including the MLCT electronic configurations into the basis functions of the model Hamiltonian. As a first attempt, parameters in the model Hamiltonian matrix elements are determined by using density functional theory (DFT) and time-dependent (TD-)DFT calculation results as benchmarks. To examine the performance of the model Hamiltonian, the potential energy curves along the interpolation between the lowest singlet and quintet state structures are compared to those from the (TD-)DFT calculations and to those from CASPT2 calculations in literature. The electronic absorption spectrum computed through molecular dynamics simulation is compared to the experimental spectrum. The spin-orbit couplings at the ground state structure are also compared to those from wavefunction-based ab initio electronic structure calculations. The results indicate that the constructed model Hamiltonian provides reasonable information on both the low-lying d-d and MLCT excited states of [Fe(bpy)3 ]2+ .

5.
6.
Sci Rep ; 9(1): 1484, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728392

RESUMO

The small red bean, Vigna angularis, is primarily used to produce the "an-paste" component of Japanese sweets. Through the manufacturing process, the red seed-coat pigment is transferred to the colorless "an-particles", imparting a purple color. However, the major pigment in the seed coat has not yet been identified, although it is historically presumed to be an anthocyanin. Here, we report the isolation and structural determination of two hydrophobic purple pigments in the seed coat via instrumental analysis and derivatization. The new pigments, catechinopyranocyanidins A and B, contain a novel pyranoanthocyanidin skeleton condensed with a catechin and cyanidin ring system, and no sugar moieties. Catechinopyranocyanidins A and B are diastereomers with a different configuration at the catechin moiety, and both are purple in color in strongly acidic-to-neutral media. Catechinopyranocyanidins A and B are very stable under dark conditions, but, labile to light and decompose to colorless compounds. Thus, these pigments exhibit quite different chemical properties compared to simple anthocyanidins.


Assuntos
Antocianinas/química , Pigmentos Biológicos/química , Vigna/química , Catequina/química , Cor , Estrutura Molecular , Pigmentação , Sementes , Vigna/ultraestrutura
7.
RSC Adv ; 9(54): 31435-31439, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527956

RESUMO

An efficient conversion of rutin to the corresponding anthocyanin, cyanidin 3-O-rutinoside, was established. Clemmensen-type reduction of rutin gave a mixture of flav-2-en-3-ol and two flav-3-en-3-ols, which were easily oxidised by air to give the anthocyanin. The interconversion reactions of these flavonoids provide insight into their biosynthetic pathway.

8.
Phys Chem Chem Phys ; 20(2): 1164-1172, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242869

RESUMO

A model electronic Hamiltonian to describe ligand exchange reactions of palladium(ii) complexes with pyridine (Py) and tridentate (L) ligands was developed. It was shown that the model Hamiltonian can adequately reproduce the structures and potential energies of the reactant/product, intermediate, and transition state of the ligand exchange reaction of [PdPy4]2+ with free Py. The model Hamiltonian was extended to describe reactions of multi-metal complexes and was adequately applied to describe various clusters, [PdaLbPyc]2a+, in the self-assembly of an octahedron-shaped coordination capsule, [Pd6L8]12+. The heterogeneity in the energetics of intermediate species [PdaLbPyc]2a+ was strongly suggested by the calculations, and the underlying microscopic interactions were clarified with the geometrical motif. The present framework provides a way to examine the reaction mechanisms of complex metal ligand self-assembly, which can be complementary microscopic information to the recently investigated novel experimental results for the real time evolutions.

9.
J Chem Theory Comput ; 12(7): 3074-86, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27310524

RESUMO

Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor.

10.
Phys Chem Chem Phys ; 18(6): 4789-99, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26806402

RESUMO

Molecular dynamics (MD) simulations are performed for d-d excited states of the aqueous [Fe(bpy)3](2+) system using a previously developed model Hamiltonian. Specifically, the characters of d-d excited states and of transitions among these states are explored to gain clues about electronic relaxation during the photo-excited metal-to-ligand charge transfer (MLCT) to the lowest quintet d-d states. By evaluating the spin-orbit couplings in various nuclear configurations through MD simulations, strong mixing among low-lying d-d states with different spin multiplicities is found not to be expected in most of the sampled nuclear configurations except for surface crossing regions. The lifetimes of triplet d-d states are evaluated by Fermi's golden rule using equilibrium MD simulations. The internal conversion from upper-lying triplet to lower-lying triplet states is estimated to occur with a lifetime of order 100 fs accompanied by the distortion of the [Fe(bpy)3](2+) complex structure. This result is consistent with the discussion in another computational study, which evaluated the intersystem crossing rates by Fermi's golden rule using electronic structure calculations. In contrast, the present MD simulations cannot provide a clear picture of intersystem crossings from the lowest triplet d-d state after the above-mentioned internal conversion. Based on this result, possible relaxation mechanisms are discussed.

11.
J Chem Phys ; 140(2): 024309, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24437879

RESUMO

With the aim of exploring excited state dynamics, a model electronic Hamiltonian for several low-lying d-d states of [Fe(bpy)3](2+) complex [S. Iuchi, J. Chem. Phys. 136, 064519 (2012)] is refined using density-functional theory calculations of singlet, triplet, and quintet states as benchmarks. Spin-orbit coupling elements are also evaluated within the framework of the model Hamiltonian. The accuracy of the developed model Hamiltonian is determined by examining potential energies and spin-orbit couplings at surface crossing regions between different spin states. Insights into the potential energy surfaces around surface crossing regions are also provided through molecular dynamics simulations. The results demonstrate that the constructed model Hamiltonian can be used for studies on the d-d excited state dynamics of [Fe(bpy)3](2+).

12.
J Chem Phys ; 136(6): 064519, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360207

RESUMO

A simple model electronic Hamiltonian to describe the potential energy surfaces of several low-lying d-d states of the [Fe(bpy)(3)](2+) complex is developed for use in molecular dynamics (MD) simulation studies. On the basis of a method proposed previously for first-row transition metal ions in aqueous solution, the model Hamiltonian is constructed using density functional theory calculations for the lowest singlet and quintet states. MD simulations are then carried out for the two spin states in aqueous solution in order to examine the performance of the model Hamiltonian. The simulation results indicate that the present model electronic Hamiltonian reasonably describes the potential energy surfaces of the two spin states of the aqueous [Fe(bpy)(3)](2+) system, while retaining sufficient simplicity for application in simulation studies on excited state dynamics.


Assuntos
2,2'-Dipiridil/química , Compostos Férricos/química , Simulação de Dinâmica Molecular , Cátions Bivalentes/química , Elétrons , Água/química
13.
J Phys Chem B ; 113(13): 4017-30, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18821788

RESUMO

The behavior of the hydrated excess proton is investigated at the water-vapor, water-hydrophobic wall, and water-carbon tetrachloride interfaces through molecular dynamics simulations using the third-generation multistate empirical valence bond model (MS-EVB3). The MS-EVB3 simulations show a surface preference of the excess proton at the water-vapor interface, consistent with the discovery of this effect using an earlier version of the MS-EVB model (Petersen et al. J. Phys. Chem. B 2004, 108, 14804) and with the experimental results. The preference of the hydrated excess proton for other water-hydrophobic interfaces is also analyzed for the first time. The hydrated proton structures and charge defect delocalization effects at these interfaces are discussed in detail. By decomposing the free energy profiles into the internal energy and entropic contributions, the thermodynamic (free energy) driving forces for the surface preference of the excess proton are also elaborated. These results indicate that the "rigid" hydrated proton structures at all the interfaces are energetically (as opposed to entropically) stabilized due to the "amphiphilic" nature of the hydrated excess proton, resulting in its overall interfacial concentration enhancement. The effects of acid concentration and nuclear quantization are also explored.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Prótons , Água/química , Simulação por Computador , Difusão , Probabilidade , Solubilidade , Volatilização
14.
J Chem Phys ; 127(7): 074506, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17718619

RESUMO

The importance of quantum effects as well as the accuracy of the ab initio-based polarizable TTM2.1-F force field in describing liquid water are quantitatively assessed by a detailed analysis of the temperature dependence of several thermodynamic and dynamical properties computed using the path-integral molecular dynamics and centroid molecular dynamics methods. The results show that quantum effects are not negligible even at relatively high temperatures, and their inclusion in simulations with the TTM2.1-F water model is necessary to achieve a more accurate description of the liquid properties. Comparison with the results reported in the literature for empirical, nonpolarizable force fields demonstrates that the effects of the nuclear quantization on the dielectric constant are dependent in part on how the electronic polarization is described in the underlying water model, while comparison with other ab initio-based force fields shows that the TTM2.1-F model provides an overall accurate description of liquid water. Analysis of the isotope effect on the dynamical properties does not display significant temperature dependence. This suggests that the contribution of quantum tunneling, which has been proposed as a possible cause for the different orientational dynamics observed for the HDO:H(2)O and HDO:D(2)O systems, appears to be small.


Assuntos
Teoria Quântica , Água/química , Método de Monte Carlo , Temperatura , Termodinâmica
15.
J Chem Phys ; 126(12): 124505, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17411142

RESUMO

Many-body electronic polarization effects may be important for an accurate description of aqueous environments. As a result, numerous polarizable water models have been developed to include explicit polarization effects in intermolecular potential functions. In this paper, it is shown for liquid water at ambient conditions that such many-body polarization interactions can be decomposed into effective pairwise contributions using the force-matching (FM) method [Izvekov et al., J. Chem. Phys. 120, 10896 (2004)]. It is found that an effective pairwise water model obtained by the FM method can accurately reproduce various bulk structural and thermodynamic properties obtained from an accurate fully polarizable water model. In addition, the effective pairwise water model also provides a reasonable description of the water liquid-vapor interface, thus exhibiting a degree of transferability to heterogeneous environments. These results suggest that the role and importance of many-body electronic polarization effects in aqueous systems might be fruitfully explored relative to the best possible pairwise decomposable bulk phase model as the reference state.


Assuntos
Modelos Químicos , Água/química , Simulação por Computador , Transição de Fase
16.
J Chem Phys ; 123(2): 24505, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-16050757

RESUMO

Electronic relaxation dynamics of Ni2+-ion aqueous solution is investigated using molecular-dynamics (MD) simulations with the model-effective Hamiltonian developed previously. The nonadiabatic transition rates from the first three excited states to the ground state are evaluated by the golden rule formula with the adiabatic MD simulations. The MD simulations with the fewest-switch surface-hopping method are also carried out to obtain a more detailed description of the electronic relaxation dynamics among the excited states. We found out that the transitions among the three excited states are very fast, in the order of 10 fs, while the transition between the excited and ground states is slow, about 800 ps. These findings are consistent with the time scales of energy dissipation detected by the transient lens experiment. In both simulations, we explore the effects of the quantum decoherence, where the decoherence functions are derived by the energy-gap dynamics with the displaced harmonic-oscillator model.

17.
J Chem Phys ; 121(17): 8446-57, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15511168

RESUMO

We develop a model effective Hamiltonian for describing the electronic structures of first-row transition metals in aqueous solutions using a quasidegenerate perturbation theory. All the states consisting of 3d(n) electronic configurations are determined by diagonalizing a small effective Hamiltonian matrix, where various intermolecular interaction terms such as the electrostatic, polarization, exchange, charge transfer, and three-body interactions are effectively incorporated. This model Hamiltonian is applied to constructing the ground and triplet excited states potential energy functions of Ni(2+) in aqueous solution, based on the ab initio multiconfiguration quasidegenerate perturbation theory calculations. We perform molecular dynamics simulation calculations for the ground state of Ni(2+) aqueous solution to calculate the electronic absorption spectral shape as well as the ground state properties. Agreement between the simulation and experimental spectra is satisfactory, indicating that the present model can well describe the Ni(2+) excited state potential surfaces in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...