Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118550, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432569

RESUMO

INTRODUCTION: Current urban and transport planning practices have significant negative health, environmental, social and economic impacts in most cities. New urban development models and policies are needed to reduce these negative impacts. The Superblock model is one such innovative urban model that can significantly reduce these negative impacts through reshaping public spaces into more diverse uses such as increase in green space, infrastructure supporting social contacts and physical activity, and through prioritization of active mobility and public transport, thereby reducing air pollution, noise and urban heat island effects. This paper reviews key aspects of the Superblock model, its implementation and initial evaluations in Barcelona and the potential international uptake of the model in Europe and globally, focusing on environmental, climate, lifestyle, liveability and health aspects. METHODS: We used a narrative meta-review approach and PubMed and Google scholar databases were searched using specific terms. RESULTS: The implementation of the Super block model in Barcelona is slow, but with initial improvement in, for example, environmental, lifestyle, liveability and health indicators, although not so consistently. When applied on a large scale, the implementation of the Superblock model is not only likely to result in better environmental conditions, health and wellbeing, but can also contribute to the fight against the climate crisis. There is a need for further expansion of the program and further evaluation of its impacts and answers to related concerns, such as environmental equity and gentrification, traffic and related environmental exposure displacement. The implementation of the Superblock model gained a growing international reputation and variations of it are being planned or implemented in cities worldwide. Initial modelling exercises showed that it could be implemented in large parts of many cities. CONCLUSION: The Superblock model is an innovative urban model that addresses environmental, climate, liveability and health concerns in cities. Adapted versions of the Barcelona Superblock model are being implemented in cities around Europe and further implementation, monitoring and evaluation are encouraged. The Superblock model can be considered an important public health intervention that will reduce mortality and morbidity and generate cost savings for health and other sectors.

2.
Environ Res ; 237(Pt 1): 116891, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595831

RESUMO

BACKGROUND: The GoGreenRoutes project aims to introduce co-created nature-based solutions (NBS) to enhance environmental quality in six medium-sized cities (Burgas, Lahti, Limerick, Tallinn, Umeå, and Versailles). We estimated the mortality and economic impacts attributed to suboptimal exposure to green space and air pollution, economic impacts, and the distribution thereof the adult population by socioeconomic status. METHODS: We retrieved data from publicly accessible databases on green space (NDVI and % Green Area), air pollution (NO2 and PM2.5) and population (≥20 years, n = 804,975) at a 250m × 250m grid-cell level, and mortality for each city for 2015. We compared baseline exposures at the grid-cell to World Health Organization's recommendations and guidelines. We applied a comparative risk assessment to estimate the mortality burden attributable to not achieving the recommendations and guidelines. We estimated attributable mortality distributions and the association with income levels. RESULTS: We found high variability in air pollution and green spaces levels. Around 60% of the population lacked green space and 90% were exposed to harmful air pollution. Overall, we estimated age-standardized mortality rates varying from 10 (Umeå) to 92 (Burgas) deaths per 100,000 persons attributable to low NDVI levels; 3 (Lahti) to 38 (Burgas) per 100,000 persons to lack of % Green Area; 1 (Umeå) to 88 (Tallinn) per 100,000 persons to exceedances of NO2 guidelines; and 1 (Umeå) to 206 (Burgas) per 100,000 persons to exceedances of PM2.5 guidelines. Lower income associated with higher or lower mortality impacts depending on whether deprived populations lived in the densely constructed, highly-trafficked city centre or greener, less polluted outskirts. CONCLUSIONS: We attributed a considerable mortality burden to lack of green spaces and higher air pollution, which was unevenly distributed across different social groups. NBS and health-promoting initiatives should consider socioeconomic aspects to regenerate urban areas while providing equally good environments.

3.
Lancet Public Health ; 8(7): e546-e558, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393093

RESUMO

BACKGROUND: Ambient air pollution is a major risk to health and wellbeing in European cities. We aimed to estimate spatial and sector-specific contributions of emissions to ambient air pollution and evaluate the effects of source-specific reductions in pollutants on mortality in European cities to support targeted source-specific actions to address air pollution and promote population health. METHODS: We conducted a health impact assessment of data from 2015 for 857 European cities to estimate source contributions to annual PM2·5 and NO2 concentrations using the Screening for High Emission Reduction Potentials for Air quality tool. We evaluated contributions from transport, industry, energy, residential, agriculture, shipping, and aviation, other, natural, and external sources. For each city and sector, three spatial levels were considered: contributions from the same city, the rest of the country, and transboundary. Mortality effects were estimated for adult populations (ie, ≥20 years) following standard comparative risk assessment methods to calculate the annual mortality preventable on spatial and sector-specific reductions in PM2·5 and NO2. FINDINGS: We observed strong variability in spatial and sectoral contributions among European cities. For PM2·5, the main contributors to mortality were the residential (mean contribution of 22·7% [SD 10·2]) and agricultural (18·0% [7·7]) sectors, followed by industry (13·8% [6·0]), transport (13·5% [5·8]), energy (10·0% [6·4]), and shipping (5·5% [5·7]). For NO2, the main contributor to mortality was transport (48·5% [SD 15·2]), with additional contributions from industry (15·0% [10·8]), energy (14·7% [12·9]), residential (10·3% [5·0]), and shipping (9·7% [12·7]). The mean city contribution to its own air pollution mortality was 13·5% (SD 9·9) for PM2·5 and 34·4% (19·6) for NO2, and contribution increased among cities of largest area (22·3% [12·2] for PM2·5 and 52·2% [19·4] for NO2) and among European capitals (29·9% [12·5] for PM2·5 and 62·7% [14·7] for NO2). INTERPRETATION: We estimated source-specific air pollution health effects at the city level. Our results show strong variability, emphasising the need for local policies and coordinated actions that consider city-level specificities in source contributions. FUNDING: Spanish Ministry of Science and Innovation, State Research Agency, Generalitat de Catalunya, Centro de Investigación Biomédica en red Epidemiología y Salud Pública, and Urban Burden of Disease Estimation for Policy Making 2023-2026 Horizon Europe project.


Assuntos
Poluição do Ar , Avaliação do Impacto na Saúde , Adulto , Humanos , Cidades , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Material Particulado
4.
Lancet Planet Health ; 7(4): e271-e281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934727

RESUMO

BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.


Assuntos
Temperatura Baixa , Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Europa (Continente)
5.
Lancet ; 401(10376): 577-589, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36736334

RESUMO

BACKGROUND: High ambient temperatures are associated with many health effects, including premature mortality. The combination of global warming due to climate change and the expansion of the global built environment mean that the intensification of urban heat islands (UHIs) is expected, accompanied by adverse effects on population health. Urban green infrastructure can reduce local temperatures. We aimed to estimate the mortality burden that could be attributed to UHIs and the mortality burden that would be prevented by increasing urban tree coverage in 93 European cities. METHODS: We did a quantitative health impact assessment for summer (June 1-Aug 31), 2015, of the effect of UHIs on all-cause mortality for adults aged 20 years or older in 93 European cities. We also estimated the temperature reductions that would result from increasing tree coverage to 30% for each city and estimated the number of deaths that could be potentially prevented as a result. We did all analyses at a high-resolution grid-cell level (250 × 250 m). We propagated uncertainties in input analyses by using Monte Carlo simulations to obtain point estimates and 95% CIs. We also did sensitivity analyses to test the robustness of our estimates. FINDINGS: The population-weighted mean city temperature increase due to UHI effects was 1·5°C (SD 0·5; range 0·5-3·0). Overall, 6700 (95% CI 5254-8162) premature deaths could be attributable to the effects of UHIs (corresponding to around 4·33% [95% CI 3·37-5·28] of all summer deaths). We estimated that increasing tree coverage to 30% would cool cities by a mean of 0·4°C (SD 0·2; range 0·0-1·3). We also estimated that 2644 (95% CI 2444-2824) premature deaths could be prevented by increasing city tree coverage to 30%, corresponding to 1·84% (1·69-1·97) of all summer deaths. INTERPRETATION: Our results showed the deleterious effects of UHIs on mortality and highlighted the health benefits of increasing tree coverage to cool urban environments, which would also result in more sustainable and climate-resilient cities. FUNDING: GoGreenRoutes, Spanish Ministry of Science and Innovation, Institute for Global Health, UK Medical Research Council, European Union's Horizon 2020 Project Exhaustion.


Assuntos
Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Temperatura Baixa , Estações do Ano
6.
Environ Int ; 162: 107160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231841

RESUMO

BACKGROUND: Road traffic is the main source of environmental noise in European cities and one of the main environmental risks to health and wellbeing. In this study we aimed to provide an in-depth assessment of available road traffic noise data and to estimate population exposure and health impacts for cities in Europe. METHODS: We conducted the analysis for 724 cities and 25 greater cities in 25 European countries. We retrieved road traffic strategic noise maps delivered under the Environmental Noise Directive (END) or available from local sources. We assessed noise exposure using the 24 h day-evening-night noise level indicator (Lden) starting at exposure levels of 55 dB Lden - based on data availability - for the adult population aged 20 and over (n = 123,966,346). For the adults exposed to noise levels above 55 dB Lden we estimated the health impacts of compliance with the World Health Organization (WHO) recommendation of 53 dB Lden. Two primary health outcomes were assessed: high noise annoyance and Ischemic Heart Disease (IHD), using mortality from IHD causes as indicator. Exposure Response Functions (ERFs) relating road traffic noise exposure to annoyance and IHD mortality were retrieved from the literature. Uncertainties in input parameters were propagated using Monte Carlo simulations to obtain point estimates and empirical 95% Confidence Intervals (CIs). Lastly, the noise maps were categorized as high, moderate and low quality following a qualitative approach. RESULTS: Strategic noise map data was delivered in three distinct formats (i.e. raster, polygon or polyline) and had distinct noise ranges and levels of categorization. The majority of noise maps (i.e. 83.2%) were considered of moderate or low quality. Based on the data provided, almost 60 million adults were exposed to road traffic noise levels above 55 dB Lden, equating to a median of 42% (Interquartile Range (IQR): 31.8-64.8) of the adult population across the analysed cities. We estimated that approximately 11 million adults were highly annoyed by road traffic noise and that 3608 deaths from IHD (95% CI: 843-6266) could be prevented annually with compliance of the WHO recommendation. The proportion of highly annoyed adults by city had a median value of 7.6% (IQR: 5.6-11.8) across the analysed cities, while the number preventable deaths had a median of 2.2 deaths per 100,000 population (IQR: 1.4-3.1). CONCLUSIONS: Based on the provided strategic noise maps a considerable number of adults in European cities are exposed to road traffic noise levels harmful for health. Efforts to standardize the strategic noise maps and to increase noise and disease data availability at the city level are needed. These would allow for a more accurate and comprehensive assessment of the health impacts and further help local governments to address the adverse health effects of road traffic noise.


Assuntos
Isquemia Miocárdica , Ruído dos Transportes , Adulto , Cidades , Exposição Ambiental/efeitos adversos , Avaliação do Impacto na Saúde , Humanos , Isquemia Miocárdica/epidemiologia , Ruído dos Transportes/efeitos adversos
7.
BMJ Open ; 12(1): e054270, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058262

RESUMO

INTRODUCTION: Cities have long been known to be society's predominant engine of innovation and wealth creation, yet they are also hotspots of pollution and disease partly due to current urban and transport practices. The aim of the European Urban Burden of Disease project is to evaluate the health burden and its determinants related to current and future potential urban and transport planning practices and related exposures in European cities and make this evidence available for policy and decision making for healthy and sustainable futures. METHODS AND ANALYSIS: Drawing on an established comparative risk assessment methodology (ie, Urban and Transport Planning Health Impact Assessment) tool), in nearly 1000 European cities we will (1) quantify the health impacts of current urban and transport planning related exposures (eg, air pollution, noise, excess heat, lack of green space) (2) and evaluate the relationship between current levels of exposure, health impacts and city characteristics (eg, size, density, design, mobility) (3) rank and compare the cities based on exposure levels and the health impacts, (4) in a number of selected cities assess in-depth the linkages between urban and transport planning, environment, physical activity and health, and model the health impacts of alternative and realistic urban and transport planning scenarios, and, finally, (5) construct a healthy city index and set up an effective knowledge translation hub to generate impact in society and policy. ETHICS AND DISSEMINATION: All data to be used in the project are publicly available data and do not need ethics approval. We will request consent for personal data on opinions and views and create data agreements for those providing information on current and future urban and transport planning scenarios.For dissemination and to generate impact, we will create a knowledge translation hub with information tailored to various stakeholders.


Assuntos
Poluição do Ar , Avaliação do Impacto na Saúde , Poluição do Ar/efeitos adversos , Cidades , Planejamento de Cidades , Efeitos Psicossociais da Doença , Humanos , Saúde da População Urbana
8.
Lancet Planet Health ; 5(10): e718-e730, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627476

RESUMO

BACKGROUND: Natural outdoor environments including green spaces play an important role in preserving population health and wellbeing in cities, but the number of deaths that could be prevented by increasing green space in European cities is not known. We aimed to estimate the number of natural-cause deaths among adult residents that could be prevented in cities in 31 European countries, if the WHO recommendation for universal access to green space was achieved. METHODS: In this health impact assessment study we focused on adult residents (aged ≥20 years; n=169 134 322) in 978 cities and 49 greater cities, in 31 European countries. We used two green space proxies: normalised difference vegetation index (NDVI), and percentage of green area (%GA). The exposure was estimated at a fine grid-cell level (250 m × 250 m) and the preventable mortality burden for 2015 was estimated at the local city-level. FINDINGS: For 2015 we found that meeting the WHO recommendation of access to green space could prevent 42 968 (95% CI 32 296-64 177) deaths annually using the NDVI proxy (ie, 20% [95% CI 15-30] of deaths per 100 000 inhabitants-year), which represents 2·3% (95% CI 1·7-3·4) of the total natural-cause mortality and 245 (95% CI 184-366) years of life lost per 100 000 inhabitants-year. For the %GA proxy 17 947 (95%CI 0-35 747) deaths could be prevented annually. For %GA the number of attributable deaths were half of that of the NDVI and results were non-significant due to the exposure response function considered. The distribution of NDVI and %GA varied between cities and was not equally distributed within cities. Among European capitals, Athens, Brussels, Budapest, Copenhagen, and Riga showed some of the highest mortality burdens due to the lack of green space. The main source of uncertainty for our results was the choice of the age-structures of the population for the NDVI analysis, and exposure-response function for the %GA analysis. INTERPRETATION: A large number of premature deaths in European cities could be prevented by increasing exposure to green space, while contributing to sustainable, liveable and healthy cities. FUNDING: GoGreenRoutes, Internal ISGlobal fund, and the United States Department of Agriculture Forest Service.


Assuntos
Avaliação do Impacto na Saúde , Parques Recreativos , Cidades , Meio Ambiente , Mortalidade Prematura , Estados Unidos
9.
Environ Res ; 196: 110988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689819

RESUMO

BACKGROUND: The population living in urban areas is growing rapidly. The level of exposure to adverse environmental factors is detrimental to human health and is directly related to urban and transport planning practices. OBJECTIVE: To estimate the premature mortality burden of non-compliance with international exposure guidelines for air pollution, noise, access to green space and heat for Barcelona and Madrid (Spain), and its distribution among the population by the socioeconomic status (SES). METHODS: The Urban and TranspOrt planning Health Impact Assessment (UTOPHIA) tool was applied and the attributable premature mortality due to non-compliance with recommended exposure levels was estimated. The distribution of the attributable mortality burden among the population by SES was investigated through Generalized Additive Models (GAMs) adjusting for spatial autocorrelation and a cluster analysis was performed to identify attributable mortality hot spots. RESULTS: Annually, 7.1% and 3.4% of premature mortality in Barcelona and Madrid, respectively, could be attributed to non-compliance with the international exposure recommendations for air pollution, noise, heat and access to green space. In addition, analysis by SES showed that in Barcelona lower SES areas had an overall greater attributable mortality rate, while in Madrid, the distribution of the attributable mortality burden by SES varied by exposure. CONCLUSION: This study shows the impact of environmental exposures on mortality and highlights the importance of taking integrated actions when designing cities considering the health impacts, but also the specificities of each city such as the socio-demographic context. Moreover, the high precision scale of the analysis enables the identification of environmental hazards and mortality hot spots providing a powerful tool to support priority-setting and guide policymakers towards a healthy, sustainable and just city for all of their residents.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Cidades , Exposição Ambiental/análise , Humanos , Classe Social , Espanha/epidemiologia
10.
Acta Trop ; 183: 64-77, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621537

RESUMO

Visceral Leishmaniasis (VL) is a disseminated protozoan infection caused by Leishmania donovani that affects almost half a million people annually. In Northern Ethiopia, VL is common in migrant agricultural laborers returning from the lowland sesame fields of Metema and Humera. Recent VL foci have emerged in resident rural populations near the town. In the current study, we evaluate multilevel entomological, epidemiological and ecological factors associated with infection and disease through fine-scale eco-epidemiological analyses in three villages. Satellite images showed that villages constructed in or close to vertisols, were likely to become endemic for VL. Vertisols or black-cotton soil, are characterized by high contents of smectitic clay minerals, which swell when hydrated and shrink upon desiccation, causing extensive deep cracking during the dry season. The population densities of Phlebotomus orientalis, the vector, were negatively correlated with distance from vertisols and persons living close to vertisols were more likely to be bitten by sand flies, as evidenced by sero-positivity to Ph. orientalis saliva. Apparent (albeit non-significant) clustering of VL cases and abundant asymptomatic infections close to vertisols, suggest anthroponotic transmission around houses located close to vertisols. Comparable rates of male and female volunteers, mostly under 15 years of age, were infected with L. donovani but a significantly higher proportion of males succumbed to VL indicating a physiological gender-linked male susceptibility. Our data suggest that the abundant infected persons with high parasitemias who remain asymptomatic, may serve as reservoir hosts for anthroponotic transmission inside villages. Only limited insights on the transmission dynamics of L. donovani were gained by the study of environmental factors such as presence of animals, house structure and vegetation cover.


Assuntos
Leishmaniose Visceral/epidemiologia , Adolescente , Adulto , Agricultura , Animais , Criança , Ecossistema , Estudos Epidemiológicos , Etiópia/epidemiologia , Feminino , Humanos , Leishmania donovani , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Masculino , Doenças Profissionais/epidemiologia , Doenças Profissionais/parasitologia , Densidade Demográfica , Psychodidae , População Rural , Estações do Ano , Distribuição por Sexo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...