Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 20(7): 3380-3392, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279175

RESUMO

Crystal structure prediction (CSP) is an invaluable tool in the pharmaceutical industry because it allows to predict all the possible crystalline solid forms of small-molecule active pharmaceutical ingredients. We have used a CSP-based cocrystal prediction method to rank ten potential cocrystal coformers by the energy of the cocrystallization reaction with an antiviral drug candidate, MK-8876, and a triol process intermediate, 2-ethynylglyclerol. For MK-8876, the CSP-based cocrystal prediction was performed retrospectively and successfully predicted the maleic acid cocrystal as the most likely cocrystal to be observed. The triol is known to form two different cocrystals with 1,4-diazabicyclo[2.2.2]octane (DABCO), but a larger solid form landscape was desired. CSP-based cocrystal screening predicted the triol-DABCO cocrystal as rank one, while a triol-l-proline cocrystal was predicted as rank two. Computational finite-temperature corrections enabled determination of relative crystallization propensities of the triol-DABCO cocrystals with different stoichiometries and prediction of the triol-l-proline polymorphs in the free-energy landscape. The triol-l-proline cocrystal was obtained during subsequent targeted cocrystallization experiments and was found to exhibit an improved melting point and deliquescence behavior over the triol-free acid, which could be considered as an alternative solid form in the synthesis of islatravir.


Assuntos
Química Farmacêutica , Estudos Retrospectivos , Cristalização
2.
Mol Pharm ; 19(9): 3304-3313, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35985017

RESUMO

Amorphous solid dispersions (ASDs) are a well-documented formulation approach to improve the rate and extent of dissolution for hydrophobic pharmaceuticals. However, weakly basic compounds can complicate standard approaches to ASDs due to pH-dependent solubility, resulting in uncontrolled drug release in gastric conditions and unstabilized supersaturated solutions prone to precipitation at neutral pH. This work examines the release mechanisms of amorphous dispersions containing model weakly basic pharmaceuticals posaconazole and lumefantrine from a basic poly(dimethylaminoethyl methacrylate) copolymer (Eudragit EPO) and compares their dissolution behavior with ASDs stabilized by acidic and neutral polymers to understand potential benefits to release from a basic polymeric stabilizer. It was found that dissolution of Eudragit EPO ASDs resulted in supersaturation under gastric conditions, which could be sustained upon adjustment to neutral pH. However, the dissolution behavior of Eudragit EPO ASDs was sensitive to the initial pH of the gastric media. For lumefantrine, elevated initial gastric pH resulted in precipitation of amorphous nanoparticles; for posaconazole, elevated gastric pH led to crystallization of the pharmaceutical from solution. This sensitivity to gastric pH was found to originate from the impact of Eudragit EPO on gastric pH and the solubility of each pharmaceutical in the first stage of dissolution. In total, these data illustrate benefits and liabilities for the use of Eudragit EPO for ASDs containing weak pharmaceutical bases to guide the design of robust pharmaceutical formulations.


Assuntos
Metacrilatos , Polímeros , Liberação Controlada de Fármacos , Excipientes/química , Lumefantrina , Polímeros/química , Solubilidade
3.
Mol Pharm ; 19(7): 2133-2141, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35576503

RESUMO

Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer. Herein, a comparative assessment of scXRD, 3DED, and CSP in combination with powder X-ray diffraction is carried out on two former drug candidate compounds and a multicomponent crystal of a key building block in the synthesis of gefapixant citrate.


Assuntos
Pós , Cristalografia por Raios X , Pós/química , Difração de Raios X , Raios X
6.
Faraday Discuss ; 211(0): 275-296, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30035288

RESUMO

Successful methodologies for theoretical crystal structure prediction (CSP) on flexible pharmaceutical-like organic molecules explore the lattice energy surface to find a set of plausible crystal structures. The initial search stages of CSP studies use relatively simple lattice energy approximations as hundreds of thousands of minima have to be considered. These generated crystal structures often have poor molecular geometries, as well as inaccurate lattice energy rankings, and performing reasonably accurate but computationally affordable optimisations of the crystal structures generated in a search would be highly desirable. Here, we seek to explore whether semi-empirical quantum-mechanical methods can perform this task. We employed the dispersion-corrected tight-binding Hamiltonian (DFTB3-D3) to relax all the inter- and intra-molecular degrees of freedom of several thousands of generated crystal structures of five pharmaceutical-like molecules, saving a large amount of computational effort compared to earlier studies. The computational cost scales better with molecular size and flexibility than other CSP methods, suggesting that it could be extended to even larger and more flexible molecules. On average, this optimisation improved the average reproduction of the eight experimental crystal structures (RMSD15) and experimental conformers (RMSD1) by 4% and 23%, respectively. The intermolecular interactions were then further optimised using distributed multipoles, derived from the molecular wave-functions, to accurately describe the electrostatic components of the intermolecular energies. In all cases, the experimental crystal structures are close to the top of the lattice energy ranking. Phonon calculations on some of the lowest energy structures were also performed with DFTB3-D3 methods to calculate the vibrational component of the Helmholtz free energy, providing further insights into the solid-state behaviour of the target molecules. We conclude that DFTB3-D3 is a cost-effective method for optimising flexible molecules, bridging the gap between the approximate methods used in CSP searches for generating crystal structures and more accurate methods required in the final energy ranking.

7.
J Chem Theory Comput ; 13(10): 5163-5171, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28892623

RESUMO

Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.


Assuntos
Informática , Preparações Farmacêuticas/química , Teoria Quântica , Cristalografia por Raios X , Bases de Dados Factuais , Modelos Moleculares , Estrutura Molecular
8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 439-59, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27484368

RESUMO

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...