Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 257: 112604, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38763100
2.
J Inorg Biochem ; 257: 112594, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38749080

RESUMO

We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.

3.
Angew Chem Int Ed Engl ; 60(8): 3974-3978, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215801

RESUMO

De Novo metalloprotein design assesses the relationship between metal active site architecture and catalytic reactivity. Herein, we use an α-helical scaffold to control the iron coordination geometry when a heme cofactor is allowed to bind to either histidine or cysteine ligands, within a single artificial protein. Consequently, we uncovered a reversible pH-induced switch of the heme axial ligation within this simplified scaffold. Characterization of the specific heme coordination modes was done by using UV/Vis and Electron Paramagnetic Resonance spectroscopies. The penta- or hexa-coordinate thiolate heme (9≤pH≤11) and the penta-coordinate imidazole heme (6≤pH≤8.5) reproduces well the heme ligation in chloroperoxidases or cyt P450 monooxygenases and peroxidases, respectively. The stability of heme coordination upon ferric/ferrous redox cycling is a crucial property of the construct. At basic pHs, the thiolate mini-heme protein can catalyze O2 reduction when adsorbed onto a pyrolytic graphite electrode.


Assuntos
Cisteína/metabolismo , Heme/metabolismo , Histidina/metabolismo , Metaloproteínas/metabolismo , Sequência de Aminoácidos , Catálise , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Histidina/química , Concentração de Íons de Hidrogênio , Ferro/química , Metaloproteínas/química , Oxirredução , Oxigênio/química , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice
4.
Chem Sci ; 11(10): 2681-2695, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34084327

RESUMO

Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.

5.
J Inorg Biochem ; 154: 103-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26598215

RESUMO

As part of the machinery to acquire, internalize and utilize heme as a source of iron from the host, some bacteria possess a canonical heme oxygenase, where heme plays the dual role of substrate and cofactor, the later catalyzing the cleavage of the heme moiety using O2 and electrons, and resulting in biliverdin, carbon monoxide and ferrous non-heme iron. We have previously reported that the Escherichia coli O157:H7 ChuS protein, which is not homologous to heme oxygenases, can bind and degrade heme in a reaction that releases carbon monoxide. Here, we have pursued a detailed characterization of such heme degradation reaction using stopped-flow UV-visible absorption spectrometry, the characterization of the intermediate species formed in such reaction by EPR spectroscopy and the identification of reaction products by NMR spectroscopy and Mass spectrometry. We show that hydrogen peroxide (in molar equivalent) is the key player in the degradation reaction, at variance to canonical heme oxygenases. While the initial intermediates of the reaction of ChuS with hydrogen peroxide (a ferrous keto π neutral radical and ferric verdoheme, both identified by EPR spectroscopy) are in common with heme oxygenases, a further and unprecedented reaction step, involving the cleavage of the porphyrin ring at adjacent meso-carbons, results in the release of hematinic acid (a monopyrrole moiety identified by NMR spectroscopy), a tripyrrole product (identified by Mass spectrometry) and non-heme iron in the ferric oxidation state (identified by EPR spectroscopy). Overall, the unprecedented reaction of E. coli O157:H7 ChuS provides evidence for a novel heme degradation activity in a Gram-negative bacterium.


Assuntos
Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/química , Heme Oxigenase (Desciclizante)/química , Heme/química , Proteínas de Escherichia coli/fisiologia , Heme Oxigenase (Desciclizante)/fisiologia , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Maleimidas/química , Propionatos/química , Piridinas/química , Pirróis/química
6.
Proteins ; 83(5): 853-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25663126

RESUMO

Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.


Assuntos
Catalase/química , Peroxidase/química , Bacillus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Modelos Moleculares , Polifenóis/química , Ligação Proteica , Especificidade por Substrato
7.
Biochemistry ; 54(2): 434-46, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25437493

RESUMO

Chlorite dismutases (Clds) convert chlorite to O2 and Cl(-), stabilizing heme in the presence of strong oxidants and forming the O═O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite.


Assuntos
Antioxidantes/metabolismo , Cloretos/metabolismo , Klebsiella pneumoniae/enzimologia , Oxirredutases/metabolismo , Oxigênio/metabolismo , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Oxirredutases/química , Multimerização Proteica
8.
Biochemistry ; 53(23): 3781-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24901481

RESUMO

The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp191(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr71(•) and Tyr236(•) is independent of the [Fe(IV)═O Trp191(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Šfrom the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632-1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr71(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248-255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665-11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557-8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.


Assuntos
Citocromo-c Peroxidase/metabolismo , Expectorantes/metabolismo , Guaiacol/metabolismo , Heme/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Biocatálise , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Expectorantes/química , Guaiacol/química , Heme/química , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Propriedades de Superfície , Triptofano/química , Triptofano/metabolismo , Tirosina/química
9.
Genome Announc ; 2(2)2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24744340

RESUMO

Bacillus pumilus is a Gram-positive, rod-shaped, aerobic bacterium isolated from the soil. B. pumilus strain B6033 was originally selected as a biocatalyst for the stereospecific oxidation of ß-lactams. Here, we present a 3.8-Mb assembly of its genome, which is the second fully assembled genome of a B. pumilus strain.

10.
Biochemistry ; 52(41): 7271-82, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24044787

RESUMO

Catalase-peroxidases or KatGs can utilize organic peroxyacids and peroxides instead of hydrogen peroxide to generate the high-valent ferryl-oxo intermediates involved in the catalase and peroxidase reactions. In the absence of peroxidatic one-electron donors, the ferryl intermediates generated with a low excess (10-fold) of peroxyacetic acid (PAA) slowly decay to the ferric resting state after several minutes, a reaction that is demonstrated in this work by both stopped-flow UV-vis absorption measurements and EPR spectroscopic characterization of Burkholderia pseudomallei KatG (BpKatG). EPR spectroscopy showed that the [Fe(IV)═O Trp330(•+)], [Fe(IV)═O Trp139(•)], and [Fe(IV)═O Trp153(•)] intermediates of the peroxidase-like cycle of BpKatG ( Colin, J. Wiseman, B. Switala, J. Loewen, P. C. Ivancich, A. ( 2009 ) J. Am. Chem. Soc. 131 , 8557 - 8563 ), formed with a low excess of PAA at low temperature, are also generated with a high excess (1000-fold) of PAA at room temperature. However, under high excess conditions, there is a rapid conversion to a persistent [Fe(IV)═O] intermediate. Analysis of tryptic peptides of BpKatG by mass spectrometry before and after treatment with PAA showed that specific tryptophan (including W330, W139, and W153), methionine (including Met264 of the M-Y-W adduct), and cysteine residues are either modified with one, two, or three oxygen atoms or could not be identified in the spectrum because of other undetermined modifications. It was concluded that these oxidized residues were the source of electrons used to reduce the excess of PAA to acetic acid and return the enzyme to the ferric state. Treatment of BpKatG with PAA also caused a loss of catalase activity towards certain substrates, consistent with oxidative disruption of the M-Y-W adduct, and a loss of peroxidase activity, consistent with accumulation of the [Fe(IV)═O] intermediate and the oxidative modification of the W330, W139, and W153. PAA, but not H2O2 or tert-butyl hydroperoxide, also caused subunit cross-linking.


Assuntos
Burkholderia pseudomallei/enzimologia , Catalase/química , Ácido Peracético/metabolismo , Peroxidases/química , Burkholderia pseudomallei/química , Burkholderia pseudomallei/genética , Catalase/genética , Catalase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Modelos Moleculares , Oxirredução , Ácido Peracético/química , Peroxidases/genética , Peroxidases/metabolismo
11.
Biochemistry ; 49(41): 8857-72, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20726527

RESUMO

We have identified a novel enzymatic reaction for nitrophorin 2 (NP2), a heme protein previously characterized as a nitric oxide carrier in the saliva of the Rhodnius prolixus insect. NP2 exhibited levels of peroxidase activity comparable to those of the bifunctional peroxidases (KatGs), despite their heme pocket structural differences (heme ruffling, Tyr38 and Tyr85 in hydrogen bonding interactions with the propionates in NP2). The intermediates of the peroxidase-like reaction of NP2 were identified by Electron Paramagnetic Resonance (EPR) and electronic absorption spectroscopies. The EPR spectrum consistent with an [Fe(IV)=O Por•]+ species was detected at pH <7. At pH ≥ 7, the change from a strong to a weak antiferromagnetic coupling interaction for the [Fe(IV)=O Por•]+ species was accompanied by the subsequent formation of an [Fe(IV)=O Por](Tyr•) intermediate. Tyr38 was shown to be the unique naturally occurring radical site in NP2. The Y38F mutant stabilized the radical on the tyrosine in hydrogen-bonding interaction with the other heme propionate (Tyr85). Kinetic studies using stopped-flow electronic absorption spectrophotometry revealed that the [Fe(IV)=O Por•]+ species reacts with histamine and norepinephrine in a peroxidase-like manner. Our findings demonstrate that NP2 has pH-dependent dual function: at the acidic pH of the insect saliva the protein behaves as a NO carrier, and, if exposed to the higher pH of the tissues and capillaries of the host, NP2 is able to bind histamine or it can efficiently inactivate norepinephrine through a peroxidase-like reaction, in the presence of hydrogen peroxide. Accordingly, the unprecedented peroxidase-like activity of NP2 is concluded to be a key biological function.


Assuntos
Besouros/enzimologia , Heme/química , Hemeproteínas/química , Proteínas de Insetos/química , Ferro/química , Peroxidase/química , Proteínas e Peptídeos Salivares/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Besouros/genética , Espectroscopia de Ressonância de Spin Eletrônica , Heme/genética , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ferro/metabolismo , Cinética , Mutação de Sentido Incorreto , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(38): 16084-9, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805263

RESUMO

The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas Fúngicas/química , Peroxidases/química , Triptofano/química , Substituição de Aminoácidos , Álcoois Benzílicos/química , Álcoois Benzílicos/metabolismo , Catálise , Coprinus/enzimologia , Coprinus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Especificidade por Substrato , Triptofano/genética , Triptofano/metabolismo
13.
J Am Chem Soc ; 131(24): 8557-63, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19530730

RESUMO

We have characterized the reactive intermediates of the peroxidase-like reaction of Bulkholderia pseudomallei KatG using multifrequency EPR spectroscopy. The aim was to investigate the putative role of tryptophanyl radicals as alternative intermediates to the [Fe(IV)=O Por(*+)] species or as short-lived species involved in superexchange-coupled pathways between redox cofactors. Three distinct sites for the formation of radical intermediates, Trp330, Trp139 and Trp153, were identified using single, double and triple variants of Bulkholderia pseudomallei KatG. The proximal Trp330 is the site for a radical in magnetic interaction with the ferryl heme iron [Fe(IV)=O Trp(*+)], formed at the expense of a short-lived [Fe(IV)=O Por(*+)] species as in the cases of Mycobacterium tuberculosis KatG and cytochrome c peroxidase. Formation of the Trp153 radical at a site close to the enzyme surface crucially depends on the integrity of the H-bonding network of the heme distal side, that includes Trp95, the radical site in the Synechocystis KatG. Accordingly, the extended H-bonding network and Trp94 provide an electron transfer pathway between Trp153 and the heme. The distal tryptophan (Trp111) being part of the KatG-specific adduct required for the catalase-like activity, is involved in facilitating electron transfer for the formation of the Trp139 radical. We propose a comprehensive description of the role of specific Trp residues that takes into account not only the apparent differences in sites for the Trp(*) intermediates in other catalase-peroxidases but also the similar cases observed in monofunctional peroxidases.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Peroxidases/química , Triptofano/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Modelos Moleculares , Mutagênese , Peroxidases/genética , Peroxidases/metabolismo , Triptofano/metabolismo
14.
J Biol Inorg Chem ; 14(5): 801-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19290552

RESUMO

The reaction of the catalase-peroxidase of Burkholderia pseudomallei with peroxyacetic acid has been analyzed using stopped-flow spectrophotometry. Two well-defined species were observed, the first defined by an increase in intensity and narrowing of the Soret band at 407 nm and a 10-nm shift of the charge transfer band from 635 to 625 nm. These features are consistent with a ferric spectrum with a greater proportion of sixth-coordination character and are assigned to an Fe(III)-peroxyacetic acid complex. Complementary 9-GHz EPR characterization of the changes in the ferric signal of the resting enzyme induced by the binding of acetate in the heme pocket substantiates the proposal. Kinetic analysis of the spectral changes as a function of peroxyacetic acid concentration revealed two independent peroxyacetic acid binding events, one coincident with formation of the Fe(III)-peroxyacetic acid complex and the other coincident with the heme oxidation to the subsequent ferryl intermediate. A model to explain the need for two peroxyacetic acid binding events is proposed. The reaction of the W330F variant followed similar kinetics, although the characteristic spectral features of the Fe(IV)=O Por(*+) species were detected. The variant D141A lacking an aspartate at the entrance to the heme cavity as well as the R108A and D141A/R108A variants showed no evidence for the Fe(III)-peroxyacetic acid complex, only the formation of ferryl species with absorbance maxima at 414, 545, and 585 nm.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Ácido Peracético/análise , Ácido Peracético/metabolismo , Peroxidases/análise , Peroxidases/metabolismo , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Mutantes/análise , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Peroxidases/genética , Ligação Proteica , Espectrofotometria
15.
Biochemistry ; 47(37): 9781-92, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18712881

RESUMO

We have combined the information obtained from rapid-scan electronic absorption spectrophotometry and multifrequency (9-295 GHz) electron paramagnetic resonance (EPR) spectroscopy to unequivocally determine the electronic nature of the intermediates in milk lactoperoxidase as a function of pH and to monitor their reactivity with organic substrates selected by their different accessibilities to the heme site. The aim was to address the question of the putative catalytic role of the protein-based radicals. This experimental approach allowed us to discriminate between the protein-based radical intermediates and [Fe(IV)=O] species, as well as to directly detect the oxidation products by EPR. The advantageous resolution of the g anisotropy of the Tyr (*) EPR spectrum at high fields showed that the tyrosine of the [Fe(IV)=O Tyr (*)] intermediate has an electropositive and pH-dependent microenvironment [g(x) value of 2.0077(0) at pH >or= 8.0 and 2.0066(2) at 4.0

Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Lactoperoxidase/química , Lactoperoxidase/metabolismo , Cristalografia por Raios X , Transporte de Elétrons , Radicais Livres/metabolismo , Oxirredução , Espectrofotometria Atômica , Especificidade por Substrato
16.
J Am Chem Soc ; 129(51): 15954-63, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18052167

RESUMO

We have characterized the intermediates formed in the peroxidase cycle of the multifunctional heme-containing enzyme KatG of M. tuberculosis. Selected Trp variants from the heme proximal (W321F) and distal (W107F and W91F) sides were analyzed together with the wild-type enzyme with regard to the reaction with peroxyacetic acid and hydrogen peroxide (in the catalase-inactive W107F). The 9 GHz EPR spectrum of the enzyme upon reaction with peroxyacetic acid showed the contribution of three protein-based radical species, two Trp* and a Tyr*, which could be discerned using a combined approach of multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy with selective deuterium labeling of tryptophan and tyrosine residues and site-directed mutagenesis. Trp321, a residue in H-bonding interactions with the iron through Asp381 and the heme axial ligand His270, was identified as one of the radical sites. The 9 GHz EPR signal of the Trp321 radical species was consistent with an exchange-coupled species similar to the oxoferryl-Trp radical intermediate in cytochrome c peroxidase. On the basis of the possibility of distinguishing among the different radical intermediates of the peroxidase cycle in M. tuberculosis KatG (MtKatG), we used EPR spectroscopy to monitor the reactivity of the enzyme and its W321F variant with isoniazid, the front-line drug used in the treatment of tuberculosis. The EPR experiments on the W321F variant preincubated with isoniazid allowed us to detect the short-lived [Fe(IV)=O Por*+] intermediate. Our results showed that neither the [Fe(IV)=O Por*+] nor the [Fe(IV)=O Trp321*+] intermediates were the reactive species with isoniazid. Accordingly, the subsequent intermediate (most probably the other Trp*) is proposed to be the oxidizing species. Our findings demonstrate that the protein-based radicals formed as alternative intermediates to the [Fe(IV)=O Por*+] can play the role of cofactors for substrate oxidation in the peroxidase cyle of KatGs.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Isoniazida/farmacologia , Mycobacterium tuberculosis/enzimologia , Peroxidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Mutagênese Sítio-Dirigida , Peroxidases/química , Peroxidases/genética
17.
Proteins ; 66(1): 219-28, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17063492

RESUMO

Five residues in the multifunctional catalase-peroxidase KatG of Burkholderia pesudomallei are essential for catalase, but not peroxidase, activity. Asp141 is the only one of these catalase-specific residues not related with the covalent adduct found in KatGs that when replaced with a nonacidic residue reduces catalase activity to 5% of native levels. Replacing the nearby catalytic residue Arg108 causes a reduction in catalase activity to 35% of native levels, whereas a variant with both Asp141 and Arg108 replaced exhibits near normal catalase activity (82% of native), suggesting a synergism in the roles of the two residues in support of catalase activity in the enzyme. Among the Asp141 variants, D141E is unique in retaining normal catalase activity but with modified kinetics, suggesting more favorable compound I formation and less favorable compound I reduction. The crystal structure of the D141E variant has been determined at 1.8-A resolution, revealing that the carboxylate of Glu141 is moved only slightly compared with Asp141, but retains its hydrogen bond interaction with the main chain nitrogen of Ile237. In contrast, the low temperature ferric Electron Paramagnetic Resonance spectra of the D141A, R108A, and R108A/D141A variants are consistent with modifications of the water matrix and/or the relative positioning of the distal residue side chains. Such changes explain the reduction in catalase activity in all but the double variant R108A/D141A. Two pathways of hydrogen bonded solvent lead from the entrance channel into the heme active site, one running between Asp141 and Arg108 and the second between Asp141 and the main chain atoms of residues 237-239. It is proposed that binding of substrate H(2)O(2) to Asp141 and Arg108 controls H(2)O(2) access to the heme active site, thereby modulating the catalase reaction.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Peroxidases/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Ligação de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Mutação , Oxirredução , Peroxidases/genética , Peroxidases/metabolismo , Solventes/metabolismo , Especificidade por Substrato
18.
J Biol Chem ; 281(44): 33140-51, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16956885

RESUMO

A growing body of evidence indicates that phytooxylipins play important roles in plant defense responses. However, many enzymes involved in the biosynthesis of these metabolites are still elusive. We have purified one of these enzymes, the peroxygenase (PXG), from oat microsomes and lipid droplets. It is an integral membrane protein requiring detergent for its solubilization. Proteinase K digestion showed that PXG is probably deeply buried in lipid droplets or microsomes with only about 2 kDa at the C-terminal region accessible to proteolytic digestion. Sequencing of the N terminus of the purified protein showed that PXG had no sequence similarity with either a peroxidase or a cytochrome P450 but, rather, with caleosins, i.e. calcium-binding proteins. In agreement with this finding, we demonstrated that recombinant thale cress and rice caleosins, expressed in yeast, catalyze hydroperoxide-dependent mono-oxygenation reactions that are characteristic of PXG. Calcium was also found to be crucial for peroxygenase activity, whereas phosphorylation of the protein had no impact on catalysis. Site-directed mutagenesis studies revealed that PXG catalytic activity is dependent on two highly conserved histidines, the 9 GHz EPR spectrum being consistent with a high spin pentacoordinated ferric heme.


Assuntos
Cálcio/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Avena/enzimologia , Avena/genética , Proteínas de Ligação ao Cálcio/metabolismo , Catálise , Membrana Celular/metabolismo , Motivos EF Hand , Espectroscopia de Ressonância de Spin Eletrônica , Lipídeos/isolamento & purificação , Microssomos/enzimologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Oxirredução , Oxigênio/metabolismo , Fosforilação , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/enzimologia , Alinhamento de Sequência
19.
Biochemistry ; 45(16): 5171-9, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16618106

RESUMO

Crystals of Burkholderia pseudomallei KatG retain their ability to diffract X-rays at high resolution after adjustment of the pH from 5.6 to 4.5, 6.5, 7.5, and 8.5, providing a unique view of the effect of pH on protein structure. One significant pH-sensitive change lies in the appearance of a perhydroxy group attached to the indole nitrogen of the active site Trp111 above pH 7, similar to a modification originally observed in the Ser324Thr variant of the enzyme at pH 5.6. The modification forms rapidly from molecular oxygen in the buffer with 100% occupancy after one minute of soaking of the crystal at room temperature and pH 8.5. The low temperature (4 K) ferric EPR spectra of the resting enzyme, being very sensitive to changes in the heme iron microenvironment, confirm the presence of the modification above pH 7 in native enzyme and variants lacking Arg426 or Met264 and its absence in variants lacking Trp111 or Tyr238. The indole-perhydroxy group is very likely the reactive intermediate of molecular oxygen in the NADH oxidase reaction, and Arg426 is required for its reduction. The second significant pH-sensitive change involves the buried side chain of Arg426 that changes from one predominant conformation at low pH to a second at high pH. The pH profiles of the peroxidase, catalase, and NADH oxidase reactions can be correlated with the distribution of Arg426 conformations. Other pH-induced structural changes include a number of surface-situated side chains, but there is only one change involving a displacement of main chain atoms triggered by the protonation of His53 in a deep pocket in the vicinity of the molecular 2-fold axis.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Triptofano/metabolismo , Arginina/genética , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Hidroxilação , Indóis/química , Indóis/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Peroxidases/genética , Estrutura Terciária de Proteína , Triptofano/genética
20.
J Inorg Biochem ; 100(5-6): 1091-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16574230

RESUMO

The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions. Trp122 is very close to the iron on the heme distal side while Trp106 belongs to a short stretch (11 amino acid residues on the enzyme surface) that is highly conserved in catalase-peroxidases. We have used EPR spectroscopy to characterize the changes on the heme microenvironment induced by these mutations as well as the chemical nature of the radicals formed in each variant. Our findings identify Trp106 as the tryptophanyl radical site in Synechocystis catalase-peroxidase. The W122H and W106Y variants were specially designed to mimic the hydrogen-bond interactions of the naturally occurring Trp residues. These variants clearly demonstrated the important role of the extensive hydrogen-bonding network of the heme distal side, in the formation of the tryptophanyl radical. Moreover, the fact that W106Y is the only Synechocystis catalase-peroxidase variant of the distal heme side that recovers a catalase activity comparable to the WT enzyme, strongly indicates that the integrity of the extensive hydrogen-bonding network is also essential for the catalatic activity of the enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Peroxidases/metabolismo , Synechocystis/enzimologia , Triptofano/química , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Marcação por Isótopo , Cinética , Modelos Moleculares , Peroxidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...