Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138009

RESUMO

Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.

2.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004811

RESUMO

The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.

3.
Microorganisms ; 11(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630618

RESUMO

The complete genome of the naphthalene- and n-alkane-degrading strain Pseudomonas sp. strain OVF7 was collected and analyzed. Clusters of genes encoding enzymes for the degradation of naphthalene and n-alkanes are localized on the chromosome. Based on the Average Nucleotide Identity and digital DNA-DNA Hybridization compared with type strains of the group of fluorescent pseudomonads, the bacterium studied probably belongs to a new species. Using light, fluorescent, and scanning electron microscopy, the ability of the studied bacterium to form biofilms of different architectures when cultured in liquid mineral medium with different carbon sources, including naphthalene and n-dodecane, was demonstrated. When grown on a mixture of naphthalene and n-dodecane, the strain first consumed naphthalene and then n-dodecane. Cultivation of the strain on n-dodecane was characterized by a long adaptation phase, in contrast to cultivation on naphthalene and a mixture of naphthalene and n-dodecane.

4.
Microorganisms ; 11(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110515

RESUMO

Strains of the genus Delftia are poorly studied microorganisms. In this work, the complete genome of the naphthalene-degrading Delftia tsuruhatensis strain ULwDis3 isolated from seawater of the Gulf of Finland of the Baltic Sea was assembled. For the first time, genes encoding naphthalene cleavage pathways via salicylate and gentisate were identified in a strain of the genus Delftia. The genes are part of one operon (nag genes). Three open reading frames (ORFs) were found in the genome of D. tsuruhatensis strain ULwDis3 that encode gentisate 1.2-dioxygenase. One of the ORFs is part of the nag operon. The physiological and biochemical characteristics of the strain ULwDis3 when cultured in mineral medium with naphthalene as the sole source of carbon and energy were also studied. It was found that after 22 h of growth, the strain stopped consuming naphthalene, and at the same time, naphthalene 1.2-dioxygenase and salicylate 5-hydroxylase activities were not detected. Later, a decrease in the number of living cells and the death of the culture were observed. Gentisate 1.2-dioxygenase activity was detected from the time of gentisate formation until culture death.

5.
Microorganisms ; 11(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838491

RESUMO

The impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components. Fungal communities were instead impacted only by biotope type. Our findings revealed that the structure of fungal communities was mostly impacted by PAHs whereas bacterial communities were sensitive to metals. Bacteria of the genus Sphingomonas in road and leaf dust as indicators of the ecological state of the urban ecosystems were proposed.

6.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296255

RESUMO

We performed a comparative study of the total bacterial communities and communities of cultivable polycyclic aromatic hydrocarbons (PAH)-degrading bacteria in different functional zones of Moscow and Murmansk that were formed under the influence of the PAH composition in road and leaf dust. The PAHs were determined by high-performance liquid chromatography (HPLC); the bacterial communities' diversity was assessed by metabarcoding. The degraders were isolated by their direct plating on a medium with the PAHs. The PAH total quantity declined in the leaf dust from the traffic to the recreational zone. For the road dust, a negative gradient with pollution was observed for Rhodococcus and Acinetobacter degraders and for their relative abundance in the microbiome for the functional zones of Moscow. The opposite effect was observed in the Murmansk leaf dust for the Rothia and Pseudomonas degraders and in the Moscow road dust for Microbacterium. The PCA and linear regression analyses showed that the Micrococcus degraders in the dust were sensitive to anthropogenic pollution, so they can be used as a tool for monitoring anthropogenic changes in the biosphere. The data on the degraders' and microbial communities' diversity suggest that minor degrading strains can play a key role in PAH degradation.

7.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297899

RESUMO

Drug-eluting films made of bioresorbable polymers are a widely used tool of modern personalized medicine. However, most currently existing methods of producing coatings do not go beyond the laboratory, as they have low encapsulation efficiency and/or difficulties in scaling up. The PLACE (Printed Layered Adjustable Cargo Encapsulation) technology proposed in this article uses an additive approach for film manufacturing. PLACE technology is accessible, scalable, and reproducible in any laboratory. As a demonstration of the technology capabilities, we fabricated layered drug-eluting polyglycolic acid films containing different concentrations of Cefazolin antibiotic. The influence of the amount of loaded drug component on the film production process and the release kinetics was studied. The specific loading of drugs was significantly increased to 200-400 µg/cm2 while maintaining the uniform release of Cefazolin antibiotic in a dosage sufficient for local antimicrobial therapy for 14 days. The fact that the further increase in the drug amount results in the crystallization of a substance, which can lead to specific defects in the cover film formation and accelerated one-week cargo release, was also shown, and options for further technology development were proposed.

8.
Antonie Van Leeuwenhoek ; 115(10): 1253-1264, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35965303

RESUMO

Planctomycetes of the family Pirellulaceae are commonly addressed as budding aquatic bacteria with a complex lifestyle. Although this family is well represented by cultured and taxonomically characterized isolates, nearly all of them were obtained from brackish or marine habitats. The examples of described freshwater Pirellulaceae planctomycetes are limited to two species only, Pirellula staley and 'Anatilimnocola aggregata'. In this study, we characterized a novel freshwater planctomycete of the genus 'Anatilimnocola', strain PX40T, which was isolated from a boreal eutrophic lake. Strain PX40T was represented by budding, unpigmented, ellipsoidal to pear-shaped cells, which often occurred in characteristic flower-like rosettes. Cells were covered by bundles of fimbriae; crateriform-like structures were localized on a reproductive cell pole only. These planctomycetes were obligately aerobic, heterotrophic bacteria that utilized various sugars and some polysaccharides, and were highly sensitive to NaCl. Growth occurred in the pH range 5.0-7.5 (with an optimum at pH 6.5-7.0), and at temperatures between 15 and 30 °C (with an optimum at 22-25 °C). The major fatty acids of strain PX40T were C18:1ω9c, C16:0, and 16:1ω7c; cells also contained a wide variety of hydroxy- and dihydroxy-fatty acids and a C31:9 alkene. The major intact polar lipids were diacylglyceryl-(N,N,N)-trimethylhomoserines. The 16S rRNA gene sequence of strain PX40T displayed 96.6% similarity to that of 'Anatilimnocola aggregata' ETA_A8T. The genome of strain PX40T was 8.93 Mb in size and contained one copy of rRNA operon, 76 tRNA genes and 7092 potential protein-coding genes. The DNA G+C content was 57.8%. The ANI value between strain PX40T and 'Anatilimnocola aggregata' ETA_A8T was 78.3%, suggesting that these planctomycetes represent distinct species. We, therefore, propose a novel species of the genus 'Anatilimnocola', 'A. floriformis' sp. nov., with strain PX40T (= KCTC 92369T = VKM B-3621T = UQM 41463T) as the type strain.


Assuntos
Lagos , Planctomycetales , Alcenos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Açúcares
9.
Polymers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631911

RESUMO

Narrow dispersed poly(1-vinyl-1,2,4-triazole) (PVT) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of 1-vinyl-1,2,4-triazole (VT). AIBN as the initiator and dithiocarbamates, xanthates, and trithiocarbonates as the chain transfer agents (CTA) were used. Dithiocarbamates proved to be the most efficient in VT polymerization. Gel permeation chromatography was used to determine the molecular weight distribution and polydispersity of the synthesized polymers. The presence of the CTA stabilizing and leaving groups in the PVT was confirmed by 1H and 13C NMR spectroscopy. The linear dependence of the degree of polymerization on time confirms the conduct of radical polymerization in a controlled mode. The VT conversion was over 98% and the PVT number average molecular weight ranged from 11 to 61 kDa. The polydispersity of the synthesized polymers reached 1.16. The occurrence of the controlled radical polymerization was confirmed by monitoring the degree of polymerization over time.

11.
Microorganisms ; 9(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946166

RESUMO

Methanotrophic verrucomicrobia of the order Methylacidiphilales are known as extremely acidophilic, thermophilic or mesophilic bacteria that inhabit acidic geothermal ecosystems. The occurrence of verrucomicrobial methanotrophs in other types of acidic environments remains an open question. Notably, Methylacidiphilales-affiliated 16S rRNA gene sequences are commonly retrieved from acidic (pH 3.5-5.5) peatlands. In this study, we compared the patterns of verrucomicrobial diversity in four acidic raised bogs and six neutral fens located in European North Russia. Methylacidiphilales-like 16S rRNA gene reads displaying 83-86% similarity to 16S rRNA gene sequences of currently described verrucomicrobial methanotrophs were recovered exclusively from raised bogs. Laboratory incubation of peat samples with 10% methane for 3 weeks resulted in the pronounced increase of a relative abundance of alphaproteobacterial methanotrophs, while no response was detected for Methylacidiphilales-affiliated bacteria. Three metagenome-assembled genomes (MAGs) of peat-inhabiting Methylacidiphilales bacteria were reconstructed and examined for the presence of genes encoding methane monooxygenase enzymes and autotrophic carbon fixation pathways. None of these genomic determinants were detected in assembled MAGs. Metabolic reconstructions predicted a heterotrophic metabolism, with a potential to hydrolyze several plant-derived polysaccharides. As suggested by our analysis, peat-inhabiting representatives of the Methylacidiphilales are acidophilic aerobic heterotrophs, which comprise a sister family of the methanotrophic Methylacidiphilaceae.

12.
Microorganisms ; 10(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056460

RESUMO

Rokubacteria is a phylogenetic clade of as-yet-uncultivated prokaryotes, which are detected in diverse terrestrial habitats and are commonly addressed as members of the rare biosphere. This clade was originally described as a candidate phylum; however, based on the results of comparative genome analysis, was later defined as the order-level lineage, Rokubacteriales, within the phylum Methylomirabilota. The physiology and lifestyles of these bacteria are poorly understood. A dataset of 16S rRNA gene reads retrieved from four boreal raised bogs and six eutrophic fens was examined for the presence of the Rokubacteriales; the latter were detected exclusively in fens. Their relative abundance varied between 0.2 and 4% of all bacteria and was positively correlated with pH, total nitrogen content, and availability of Ca and Mg. To test an earlier published hypothesis regarding the presence of methanotrophic capabilities in Rokubacteria, peat samples were incubated with 10% methane for four weeks. No response to methane availability was detected for the Rokubacteriales, while clear a increase in relative abundance was observed for the conventional Methylococcales methanotrophs. The search for methane monooxygenase encoding genes in 60 currently available Rokubacteriales metagenomes yielded negative results, although copper-containing monooxygenases were encoded by some members of this order. This study suggests that peat-inhabiting Rokubacteriales are neutrophilic non-methanotrophic bacteria that colonize nitrogen-rich wetlands.

13.
Environ Microbiol ; 23(3): 1510-1526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325093

RESUMO

Phycisphaera-like WD2101 'soil group' is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l-rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 'soil group'.


Assuntos
Bactérias , Solo , Bactérias/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Filogenia , Planctomicetos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
14.
Microorganisms ; 8(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371270

RESUMO

Upland soils of tundra function as a constant sink for atmospheric CH4 but the identity of methane oxidizers in these soils remains poorly understood. Methane uptake rates of -0.4 to -0.6 mg CH4-C m-2 day-1 were determined by the static chamber method in a mildly acidic upland soil of the lichen-dominated forested tundra, North Siberia, Russia. The maximal CH4 oxidation activity was localized in an organic surface soil layer underlying the lichen cover. Molecular identification of methanotrophic bacteria based on retrieval of the pmoA gene revealed Upland Soil Cluster Alpha (USCα) as the only detectable methanotroph group. Quantification of these pmoA gene fragments by means of specific qPCR assay detected ~107pmoA gene copies g-1 dry soil. The pmoA diversity was represented by seven closely related phylotypes; the most abundant phylotype displayed 97.5% identity to pmoA of Candidatus Methyloaffinis lahnbergensis. Further analysis of prokaryote diversity in this soil did not reveal 16S rRNA gene fragments from well-studied methanotrophs of the order Methylococcales and the family Methylocystaceae. The largest group of reads (~4% of all bacterial 16S rRNA gene fragments) that could potentially belong to methanotrophs was classified as uncultivated Beijerinckiaceae bacteria. These reads displayed 96-100 and 95-98% sequence similarity to 16S rRNA gene of Candidatus Methyloaffinis lahnbergensis and "Methylocapsa gorgona" MG08, respectively, and were represented by eight species-level operational taxonomic units (OTUs), two of which were highly abundant. These identification results characterize subarctic upland soils, which are exposed to atmospheric methane concentrations only, as a unique habitat colonized mostly by USCα methanotrophs.

15.
Syst Appl Microbiol ; 43(5): 126129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847778

RESUMO

Planctomycetes of the family Gemmataceae are characterized by large genome sizes and cosmopolitan distribution in freshwater and terrestrial environments but their ecological functions remain poorly understood. In this study, we characterized a novel representative of this family, strain PL17T, which was isolated from a littoral tundra wetland and was capable of growth on xylan and cellulose. Cells of this isolate were represented by pink-pigmented spheres that multiplied by budding and occurred singly or in short chains and aggregates. Strain PL17T was obligately aerobic, mildly acidophilic chemoorganotrophic bacterium, which displayed good tolerance of low temperatures. The major fatty acids were C18:0, C16:1ω5, and ßOH-C16:1; the major polar lipid was trimethylornithine. The genome of strain PL17T consisted of a 9.83 Mb chromosome and a 24.69kb plasmid. The G+C contents of the chromosomal and plasmid DNA were 67.4 and 62.3mol%, respectively. Over 8900 potential protein-coding genes were identified in the genome including a putative cellulase that contains a domain from the GH5 family of glycoside hydrolases. The genome of strain PL17T contained one linked and one unlinked rRNA operons with 16S rRNA gene sequences displaying 94.5% similarity to that in Gemmata obscuriglobus UQM2246T. Based on the results of comparative phenotypic, chemotaxonomic and phylogenomic analyses, we propose to classify strain PL17T (= CECT 9407T=VKM B-3467T) as representing a novel genus and species of the family Gemmataceae, Frigoriglobus tundricola gen. nov., sp. nov.


Assuntos
Bactérias Aeróbias Gram-Negativas/classificação , Bactérias Aeróbias Gram-Negativas/isolamento & purificação , Tundra , Áreas Alagadas , Bactérias , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulose/metabolismo , Temperatura Baixa , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Bactérias Aeróbias Gram-Negativas/genética , Bactérias Aeróbias Gram-Negativas/fisiologia , Lipídeos/análise , Redes e Vias Metabólicas/genética , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , RNA Ribossômico 16S/genética , Xilanos/metabolismo
16.
Microorganisms ; 8(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235351

RESUMO

Large areas in Northern Russia are covered by extensive mires, which represent a complex mosaic of ombrotrophic raised bogs, minerotrophic and eutrophic fens, all in a close proximity to each other. In this paper, we compared microbial diversity patterns in the surface peat layers of the neighbouring raised bogs and eutrophic fens that are located within two geographically remote mire sites in Vologda region using 16S rRNA gene sequencing. Regardless of location, the microbial communities in raised bogs were highly similar to each other but were clearly distinct from those in eutrophic fens. Bogs were dominated by the Acidobacteria (30%-40% of total 16S rRNA gene reads), which belong to the orders Acidobacteriales and Bryobacterales. Other bog-specific bacteria included the Phycisphaera-like group WD2101 and the families Isosphaeraceae and Gemmataceae of the Planctomycetes, orders Opitutales and Pedosphaerales of the Verrucomicrobia and a particular group of alphaproteobacteria within the Rhizobiales. In contrast, fens hosted Anaerolineae-affiliated Chloroflexi, Vicinamibacteria- and Blastocatellia-affiliated Acidobacteria, Rokubacteria, uncultivated group OM190 of the Planctomycetes and several groups of betaproteobacteria. The Patescibacteria were detected in both types of wetlands but their relative abundance was higher in fens. A number of key parameters that define the distribution of particular bacterial groups in mires were identified.

17.
PLoS One ; 15(3): e0230157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182280

RESUMO

The Acidobacteria is one of the major bacterial phyla in soils and peatlands. The currently explored diversity within this phylum is assigned to 15 class-level units, five of which contain described members. The ecologically relevant traits of acidobacteria from different classes remain poorly understood. Here, we compared the patterns of acidobacterial diversity in sandy soils of tundra, along a gradient of increasing vegetation-unfixed aeolian sand, semi-fixed surfaces with mosses and lichens, and mature soil under fully developed plant cover. The Acidobacteria-affiliated 16S rRNA gene sequences retrieved from these soils comprised 11 to 33% of total bacterial reads and belonged mostly to members of the classes Acidobacteriia and Blastocatellia, which displayed opposite habitat preferences. The relative abundance of the Blastocatellia was maximal in unfixed sands and declined in soils of vegetated plots, showing positive correlation with soil pH and negative correlation with carbon and nitrogen availability. An opposite tendency was characteristic for the Acidobacteriia. Most Blastocatellia-affiliated reads belonged to as-yet-undescribed members of the family Arenimicrobiaceae, which appears to be characteristic for dry, depleted in organic matter soil habitats. The pool of Acidobacteriia-affiliated sequences, apart from Acidobacteriaceae- and Bryobacteraceae-related reads, had a large proportion of sequences from as-yet-undescribed families, which seem to specialize in degrading plant-derived organic matter. This analysis reveals sandy soils of tundra as a source of novel acidobacterial diversity and provides an insight into the ecological preferences of different taxonomic groups within this phylum.


Assuntos
Acidobacteria , Bactérias , Microbiologia do Solo , Tundra , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Carbono/análise , Classificação , DNA Bacteriano , Ecossistema , Metagenômica , Nitrogênio/análise , Filogenia , RNA Ribossômico 16S/genética , Solo/química
18.
Int J Syst Evol Microbiol ; 70(2): 1240-1249, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31800383

RESUMO

The family Gemmataceae accommodates aerobic, chemoorganotrophic planctomycetes, which inhabit various freshwater ecosystems, wetlands and soils. Here, we describe a novel member of this family, strain PX52T, which was isolated from a boreal eutrophic lake in Northern Russia. This isolate formed pink-pigmented colonies and was represented by spherical cells that occurred singly, in pairs or aggregates and multiplied by budding. Daughter cells were highly motile. PX52T was an obligate aerobic chemoorganotroph, which utilized various sugars and some heteropolysaccharides. Growth occurred at pH 5.0-7.5 (optimum pH 6.5) and at temperatures between 10 and 30 °C (optimum 20-25 °C). The major fatty acids were C18 : 1É·7c, C18 : 0 and ßOH-C16:0; the major intact polar lipid was trimethylornithine, and the quinone was MK-6. The complete genome of PX52T was 9.38 Mb in size and contained nearly 8000 potential protein-coding genes. Among those were genes encoding a wide repertoire of carbohydrate-active enzymes (CAZymes) including 33 glycoside hydrolases (GH) and 87 glycosyltransferases (GT) affiliated with 17 and 12 CAZy families, respectively. DNA G+C content was 65.6 mol%. PX52T displayed only 86.0-89.8 % 16S rRNA gene sequence similarity to taxonomically described Gemmataceae planctomycetes and differed from them by a number of phenotypic characteristics and by fatty acid composition. We, therefore, propose to classify it as representing a novel genus and species, Limnoglobus roseus gen. nov., sp. nov. The type strain is strain PX52T (=KCTC 72397T=VKM B-3275T).


Assuntos
Genoma Bacteriano , Lagos/microbiologia , Filogenia , Planctomycetales/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Tamanho do Genoma , Ornitina/análogos & derivados , Ornitina/química , Pigmentação , Planctomycetales/isolamento & purificação , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Syst Appl Microbiol ; 43(1): 126050, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31882205

RESUMO

Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5-7.5 and at temperatures between 10 and 30°C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92Mb in size; DNA G+C content was 61.7mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with 'Bythopirellula goksoyri' Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T=CECT 9826T=VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/fisiologia , Ecossistema , Oxigênio/metabolismo , Bactérias Anaeróbias/química , Bactérias Anaeróbias/citologia , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano/genética , Lagos/química , Lagos/microbiologia , Hibridização de Ácido Nucleico , Oxigênio/análise , Fosfolipídeos/química , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Microbiologia da Água
20.
Environ Microbiol ; 22(1): 198-211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637799

RESUMO

The first representative of the phylum Planctomycetes, Planctomyces bekefii, was described nearly one century ago. This morphologically conspicuous freshwater bacterium is a rare example of as-yet-uncultivated prokaryotes with validly published names and unknown identity. We report the results of molecular identification of this elusive bacterium, which was detected in a eutrophic boreal lake in Northern Russia. By using high-performance cell sorting, P. bekefii-like cell rosettes were selectively enriched from lake water. The retrieved 16S rRNA gene sequence was nearly identical to those in dozens of metagenomes assembled from freshwater lakes during cyanobacterial blooms and was phylogenetically placed within a large group of environmental sequences originating from various freshwater habitats worldwide. In contrast, 16S rRNA gene sequence similarity to all currently described members of the order Planctomycetales was only 83%-92%. The metagenome assembled for P. bekefii reached 43% genome coverage and showed the potential for degradation of peptides, pectins, and sulfated polysaccharides. Tracing the seasonal dynamics of P. bekefii by Illumina paired-end sequencing of 16S rRNA gene fragments and by fluorescence in situ hybridization revealed that these bacteria only transiently surpass the detection limit, with a characteristic population peak of up to 104 cells ml-1 following cyanobacterial blooms.


Assuntos
Planctomycetales/classificação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Lagos/microbiologia , Redes e Vias Metabólicas/genética , Metagenoma , Filogenia , Filogeografia , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Planctomycetales/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...