Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12338-12354, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669456

RESUMO

The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.

2.
J Phys Chem A ; 128(8): 1491-1500, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354404

RESUMO

Previously, we found that a Zn(II) complex with the redox-active ligand N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) was able to act as a functional mimic of superoxide dismutase, despite its lack of a redox-active transition metal. As the complex catalyzes the dismutation of superoxide to form O2 and H2O2, the quinol in the ligand is believed to cycle between three oxidation states: quinol, quinoxyl radical, and para-quinone. Although the metal is not the redox partner, it nonetheless is essential to the reactivity since the free ligand by itself is inactive as a catalyst. In the present work, we primarily use calculations to probe the mechanism. The calculations support the inner-sphere decomposition of superoxide, suggest that the quinol/quinoxyl radical couple accounts for most of the catalysis, and elucidate the many roles that proton transfer between the zinc complexes and buffer has in the reactivity. Acid/base reactions involving the nonmetal-coordinating hydroxyl group on the quinol are predicted to be key to lowering the energy of the intermediates. We prepared a Zn(II) complex with N-(2-hydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp1) that lacks this functional group and found that it could not catalyze the dismutation of superoxide; this confirms the importance of the second, distal hydroxyl group of the quinol.


Assuntos
Etilenodiaminas , Superóxido Dismutase , Zinco , Superóxido Dismutase/metabolismo , Hidroquinonas , Superóxidos , Ligantes , Peróxido de Hidrogênio , Oxirredução
3.
J Inorg Biochem ; 252: 112478, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218140

RESUMO

The zinc complexes of chloroquine (CQ; [Zn(CQH+)Cl3]) and hydroxychloroquine (HO-CQ; [Zn(HO-CQH+)Cl3]) were synthesized and characterized by X-Ray structure analysis, FT-IR, NMR, UV-Vis spectroscopy, and cryo-spray mass spectrometry in solid state as well as in aqueous and organic solvent solutions, respectively. In acetonitrile, up to two Zn2+ ions bind to CQ and HO-CQ through the tertiary amine and aromatic nitrogen atoms (KN-aminCQ = (3.8 ±â€¯0.5) x 104 M-1 and KN-aromCQ = (9.0 ±â€¯0.7) x 103 M-1 for CQ, and KN-aminHO-CQ = (3.3 ±â€¯0.4) x 104 M-1 and KN-aromHO-CQ = (1.6 ±â€¯0.2) x 103 M-1 for HO-CQ). In MOPS buffer (pH 7.4) the coordination proceeds through the partially deprotonated aromatic nitrogen, with the corresponding equilibrium constants of KN-arom(aq)CQ = (3.9 ±â€¯1.9) x 103 M-1and KN-arom(aq)HO-CQ = (0.7 + 0.4) x 103 M-1 for CQ and HO-CQ, respectively. An apparent partition coefficient of 0.22 was found for [Zn(CQH+)Cl3]. Mouse embryonic fibroblast (MEF) cells were treated with pre-synthesized [Zn((HO-)CQH+)Cl3] complexes and corresponding ZnCl2/(HO-)CQ mixtures and zinc uptake was determined by application of the fluorescence probe and ICP-OES measurements. Administration of pre-synthesized complexes led to higher total zinc levels than those obtained upon administration of the related zinc/(hydroxy)chloroquine mixtures. The differences in the zinc uptake between these two types of formulations were discussed in terms of different speciation and character of the complexes. The obtained results suggest that intact zinc complexes may exhibit biological effects distinct from that of the related zinc/ligand mixtures.


Assuntos
Cloroquina , Complexos de Coordenação , Animais , Camundongos , Cloroquina/farmacologia , Cloroquina/química , Hidroxicloroquina , Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fibroblastos , Nitrogênio , Complexos de Coordenação/química
4.
Dalton Trans ; 53(1): 251-259, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38037827

RESUMO

Complexes PyrDPE-RuCl and PyrDPE-Ruacac with a π-extended 2,7-di(4-phenylethynyl)pyrene linker undergo simultaneous one-electron oxidations of their {Ru}-styryl entities. The absence of an intervalence charge-transfer (IVCT) band at intermediate stages, where the mixed-valent, singly oxidized radical cation is present, and spin density confinement to the terminal styryl ruthenium site(s) are tokens of a lack of electronic coupling between the {Ru} entities across the π-conjugated linker. The close similarity of the linker-based π → π* bands in the complexes and the free ligand and their insensitivity towards oxidations at the terminal sites indicate that the central pyrenyl fluorophore is electronically decoupled from the electron-rich {Ru}-styryl termini. As a consequence, the complexes offer stable pyrene-based fluorescence emissions at 77 K, which are red-shifted from that of the linker.

5.
Inorg Chem ; 62(46): 18789-18803, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37921553

RESUMO

We report on the synthesis of the new bis(alkenylruthenium) complex DBTTF-(ViRu)2 with a longitudinally extended, π-conjugated dibenzotetrathiafulvalene (DBTTF) bridge, characterized by multinuclear NMR, IR, and UV/vis spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. Cyclic and square-wave voltammetry revealed that DBTTF-(ViRu)2 undergoes four consecutive oxidations. IR, UV/vis/near-IR, and electron paramagnetic resonance spectroscopy indicate that the first oxidation involves the redox-noninnocent DBTTF bridge, while the second oxidation is biased toward one of the peripheral styrylruthenium entities, thereby generating an electronically coupled mixed-valent state ({Ru}-CH═CH)•+-DBTTF•+-(CH═CH-{Ru}) [{Ru} = Ru(CO)Cl(PiPr3)2]. The latter is apparently in resonance with the ({Ru}-CH═CH)•+-DBTTF-(CH═CH-{Ru})•+ and ({Ru}-CH═CH)-DBTTF2+-(CH═CH-{Ru}) forms, which are calculated to lie within 19 kJ/mol. Higher oxidized forms proved too unstable for further characterization. The reaction of DBTTF-(ViRu)2 with the strong organic acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tetracyano-p-benzoquinodimethane (TCNQ), and F4TCNQ resulted in formation of the DBTTF-(ViRu)2•+ radical cation, as shown by various spectroscopic techniques. Solid samples of these compounds were found to be highly amorphous and electrically insulating.

6.
Chem Sci ; 14(36): 9910-9922, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736643

RESUMO

Previously, we found that linear quinol-containing ligands could allow manganese complexes to act as functional mimics of superoxide dismutase (SOD). The redox activity of the quinol enables even Zn(ii) complexes with these ligands to catalyze superoxide degradation. As we were investigating the abilities of manganese and iron complexes with 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane (H4qp4) to act as redox-responsive contrast agents for magnetic resonance imaging (MRI), we found evidence that they could also catalyze the dismutation of H2O2. Here, we investigate the antioxidant behavior of Mn(ii), Fe(ii), and Zn(ii) complexes with H4qp4. Although the H4qp4 complexes are relatively poor mimetics of SOD, with only the manganese complex displaying above-baseline catalysis, all three display extremely potent catalase activity. The ability of the Zn(ii) complex to catalyze the degradation of H2O2 demonstrates that the use of a redox-active ligand can enable redox-inactive metals to catalyze the decomposition of reactive oxygen species (ROS) besides superoxide. The results also demonstrate that the ligand framework can tune antioxidant activity towards specific ROS.

7.
J Am Chem Soc ; 145(4): 2230-2242, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652374

RESUMO

Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(µ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(µ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(µ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.

8.
Inorg Chem ; 61(49): 19983-19997, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36445832

RESUMO

In the current work, we demonstrate ligand design concepts that significantly improve the superoxide dismutase (SOD) activity of a zinc complex; the catalysis is enhanced when two quinol groups are present in the polydentate ligand. We investigate the mechanism through which the quinols influence the catalysis and determine the impact of entirely removing a chelating group from the original hexadentate ligand. Our results suggest that SOD mimicry with these compounds requires a ligand that coordinates Zn(II) strongly in both its oxidized and reduced forms and that the activity proceeds through Zn(II)-semiquinone complexes. The complex with two quinols displays greatly enhanced catalytic ability, with the activity improving by as much as 450% over a related complex with a single quinol. In the reduced form of the diquinol complex, one quinol appears to coordinate to the zinc much more weakly than the other. We believe that superoxide can more readily displace this portion of the ligand, facilitating its coordination to the metal center and thereby hastening the SOD reactivity. Despite the presence of two redox-active groups that may communicate through intramolecular hydrogen bonding and redox tautomerism, only one quinol undergoes two-electron oxidation to a para-quinone during the catalysis. After the formation of the para-quinone, the remaining quinol deprotonates and binds tightly to the metal, ensuring that the complex remains intact in its oxidized state, thereby maintaining its catalytic ability. The Zn(II) complex with the diquinol ligand is highly unusual for a SOD mimic in that it performs more efficiently in phosphate solution.


Assuntos
Fosfatos , Superóxido Dismutase , Ligantes , Superóxido Dismutase/metabolismo , Oxirredução , Zinco/metabolismo
9.
Inorg Chem ; 61(32): 12662-12677, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917328

RESUMO

Three-dimensional molecular barrels Ru6-4 and Ru6-5 were synthesized in high yields from dinuclear ruthenium-vinyl clamps and tritopic triphenylamine-derived carboxylate linkers and characterized by multinuclear NMR spectroscopy including 1H-1H COSY and 1H DOSY measurements, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography. The metal frameworks of the cages adopt the shape of twisted trigonal prisms, and they crystallize as racemic mixtures of interdigitating Δ- and Λ-enantiomers with a tight columnar packing in Ru6-4. Electrochemical studies and redox titrations revealed that the cages are able to release up to 11 electrons on the voltammetric timescale and that their cage structures persist up to the hexacation level. IR and UV-vis-near-infrared spectroelectrochemical studies confirm substituent-dependent intramolecular electronic communication within the π-conjugated 1,3-divinylphenylene backbone in the tricationic states, where all three divinylphenylene-bridged diruthenium clamps are present in mixed-valent radical cation states. The formation of 1:3 charge-transfer salts with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as the electron acceptor is also demonstrated.

10.
Chemistry ; 28(46): e202201179, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35666136

RESUMO

A highly water- and air-stable Fe(II) complex with the quinol-containing macrocyclic ligand H4 qp4 reacts with H2 O2 to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or two para-quinones. The reaction increases the T1 -weighted relaxivity over four-fold, enabling the complex to detect H2 O2 using clinical MRI technology. The iron-containing sensor differs from its recently characterized manganese analog, which also detects H2 O2 , in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity.


Assuntos
Meios de Contraste , Ferro , Ligantes , Imageamento por Ressonância Magnética , Água
11.
Chem Sci ; 13(10): 2891-2899, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382468

RESUMO

Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.

12.
Molecules ; 26(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34500666

RESUMO

Careful optimization of the reaction conditions provided access to the particularly small tetraruthenium macrocycle 2Ru2Ph-Croc, which is composed out of two redox-active divinylphenylene-bridged diruthenium entities {Ru}-1,4-CH=CH-C6H4-CH=CH-{Ru} (Ru2Ph; {Ru} = Ru(CO)Cl(PiPr3)2) and two likewise redox-active and potentially non-innocent croconate linkers. According to single X-ray diffraction analysis, the central cavity of 2Ru2Ph-Croc is shielded by the bulky PiPr3 ligands, which come into close contact. Cyclic voltammetry revealed two pairs of split anodic waves in the weakly ion pairing CH2Cl2/NBu4BArF24 (BArF24 = [B{C6H3(CF3)2-3,5}4]- electrolyte, while the third and fourth waves fall together in CH2Cl2/NBu4PF6. The various oxidized forms were electrogenerated and scrutinized by IR and UV/Vis/NIR spectroscopy. This allowed us to assign the individual oxidations to the metal-organic Ru2Ph entities within 2Ru2Ph-Croc, while the croconate ligands remain largely uninvolved. The lack of specific NIR bands that could be assigned to intervalence charge transfer (IVCT) in the mono- and trications indicates that these mixed-valent species are strictly charge-localized. 2Ru2Ph-Croc is hence an exemplary case, where stepwise IR band shifts and quite sizable redox splittings between consecutive one-electron oxidations would, on first sight, point to electronic coupling, but are exclusively due to electrostatic and inductive effects. This makes 2Ru2Ph-Croc a true "pretender".

13.
ChemSusChem ; 14(21): 4741-4751, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34409745

RESUMO

With a view to developing multimetallic molecular catalysts that mimic the oxygen-evolving catalyst (OEC) in Nature's photosystem II, the synthesis of various dicubanoid manganese clusters is described and their catalytic activity investigated for water oxidation in basic, aqueous solution. Pyridinemethanol-based ligands are known to support polynuclear and cubanoid structures in manganese coordination chemistry. The chelators 2,6-pyridinedimethanol (H2 L1 ) and 6-methyl-2-pyridinemethanol (HL2 ) were chosen to yield polynuclear manganese complexes; namely, the tetranuclear defective dicubanes [MnII 2 MnIII 2 (HL1 )4 (OAc)4 (OMe)2 ] and [MnII 2 MnIII 2 (HL1 )6 (OAc)2 ] (OAc)2 ⋅2 H2 O, as well as the octanuclear-dicubanoid [MnII 6 MnIII 2 (L2 )4 (O)2 (OAc)10 (HOMe/OH2 )2 ]⋅3MeOH⋅MeCN. In freshly prepared solutions, polynuclear species were detected by electrospray ionization mass spectrometry, whereas X-band electron paramagnetic resonance studies in dilute, liquid solution suggested the presence of divalent mononuclear Mn species with g values of 2. However, the magnetochemical investigation of the complexes' solutions by the Evans technique confirmed a haphazard combination of manganese coordination complexes, from mononuclear to polynuclear species. Subsequently, the newly synthesized and characterized manganese molecular complexes were employed as precursors to prepare electrode-deposited films in a buffer-free solution to evaluate and compare their stability and catalytic activity for water oxidation electrocatalysis.

14.
Chem Sci ; 12(31): 10483-10500, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447541

RESUMO

Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H2O2, [Mn(H2qp1)(MeCN)]2+ and [Mn(H4qp2)Br2], could also catalytically degrade superoxide. Subsequently, [Zn(H2qp1)(OTf)]+ was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O2˙- to O2 and H2O2, raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O2˙- in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O2˙- to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2, we detect Mn(iii)-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn(iii)-hydroperoxo compound, and what is formally a Mn(iv)-oxo species with the monoquinolate/mono-para-quinone form of H4qp2. With the monoquinolic H2qp1, we observe a Mn(ii)-superoxo ↔ Mn(iii)-peroxo intermediate with the oxidized para-quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O2˙- oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity (k cat ∼ 108 M-1 s-1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn(ii) porphyrin-based SOD mimics.

15.
Inorg Chem ; 60(12): 8368-8379, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34042423

RESUMO

Previously prepared Mn(II)- and quinol-containing magnetic resonance imaging (MRI) contrast agent sensors for H2O2 relied on linear polydentate ligands to keep the redox-activatable quinols in close proximity to the manganese. Although these provide positive T1-weighted relaxivity responses to H2O2 that result from oxidation of the quinol groups to p-quinones, these reactions weaken the binding affinity of the ligands, promoting dissociation of Mn(II) from the contrast agent in aqueous solution. Here, we report a new ligand, 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane, that consists of two quinols covalently tethered to a cyclam macrocycle. The macrocycle provides stronger thermodynamic and kinetic barriers for metal-ion dissociation in both the reduced and oxidized forms of the ligand. The Mn(II) complex reacts with H2O2 to produce a more highly aquated Mn(II) species that exhibits a 130% greater r1, quadrupling the percentile response of our next best sensor. With a large excess of H2O2, there is a noticeable induction period before quinol oxidation and r1 enhancement occurs. Further investigation reveals that, under such conditions, catalase activity initially outcompetes ligand oxidation, with the latter occurring only after most of the H2O2 has been depleted.

16.
Sci Signal ; 14(680)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906973

RESUMO

The detection of microorganisms and danger signals by pattern recognition receptors on dendritic cells (DCs) and the consequent formation of inflammasomes are pivotal for initiating protective immune responses. Although the activation of inflammasomes leading to secretion of the cytokine IL-1ß is typically accompanied by pyroptosis (an inflammatory form of lytic programmed cell death), some cells can survive and exist in a state of hyperactivation. Here, we found that the conventional type 2 DC (cDC2) subset is the major human DC subset that is transcriptionally and functionally poised for inflammasome formation and response without pyroptosis. When cDC2 were stimulated with ligands that relatively weakly activated the inflammasome, the cells did not enter pyroptosis but instead secreted IL-12 family cytokines and IL-1ß. These cytokines induced prominent T helper type 1 (TH1) and TH17 responses that were superior to those seen in response to Toll-like receptor (TLR) stimulation alone or to stronger, classical inflammasome ligands. These findings not only define the human cDC2 subpopulation as a prime target for the treatment of inflammasome-dependent inflammatory diseases but may also inform new approaches for adjuvant and vaccine development.


Assuntos
Células Dendríticas/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Th1/imunologia , Células Th17/imunologia , Humanos , Inflamassomos , Interleucina-1beta/genética , Ligantes , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
17.
Angew Chem Int Ed Engl ; 60(25): 14154-14162, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33856088

RESUMO

One of the challenges of catalysis is the transformation of inert C-H bonds to useful products. Copper-containing monooxygenases play an important role in this regard. Here we show that low-temperature oxygenation of dinuclear copper(I) complexes leads to unusual tetranuclear, mixed-valent µ4 -peroxo [CuI /CuII ]2 complexes. These Cu4 O2 intermediates promote irreversible and thermally activated O-O bond homolysis, generating Cu2 O complexes that catalyze strongly exergonic H-atom abstraction from hydrocarbons, coupled to O-transfer. The Cu2 O species can also be produced with N2 O, demonstrating their capability for small-molecule activation. The binding and cleavage of O2 leading to the primary Cu4 O2 intermediate and the Cu2 O complexes, respectively, is elucidated with a range of solution spectroscopic methods and mass spectrometry. The unique reactivities of these species establish an unprecedented, 100 % atom-economic scenario for the catalytic, copper-mediated monooxygenation of organic substrates, employing both O-atoms of O2 .

18.
Dalton Trans ; 49(47): 17375-17387, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33211034

RESUMO

A new Ru complex with the formula [Ru(bpn)(pic)2]Cl2 (where bpn is 2,2'-bi(1,10-phenanthroline) and pic stands for 4-picoline) (1Cl2) is synthesized to investigate the true nature of active species involved in the electrochemical and chemical water oxidation mediated by a class of N4 tetradentate equatorial ligands. Comprehensive electrochemical (by using cyclic voltammetry, differential pulse voltammetry, and controlled potential electrolysis), structural (X-ray diffraction analysis), spectroscopic (UV-vis, NMR, and resonance Raman), and kinetic studies are performed. 12+ undergoes a substitution reaction when it is chemically (by using NaIO4) or electrochemically oxidized to RuIII, in which picoline is replaced by an hydroxido ligand to produce [Ru(bpn)(pic)(OH)]2+ (22+). The former complex is in equilibrium with an oxo-bridged species {[Ru(bpn)(pic)]2(µ-O)}4+ (34+) which is the major form of the complex in the RuIII oxidation state. The dimer formation is the rate determining step of the overall oxidation process (kdimer = 1.35 M-1 s-1), which is in line with the electrochemical data at pH = 7 (kdimer = 1.4 M-1 s-1). 34+ can be reduced to [Ru(bpn)(pic)(OH2)]2+ (42+), showing a sort of square mechanism. All species generated in situ at pH 7 have been thoroughly characterized by NMR, mass spectrometry, UV-Vis and electrochemical techniques. 12+ and 42+ are also characterized by single crystal X-ray diffraction analysis. Chemical oxidation of 12+ triggered by CeIV shows its capability to oxidize water to dioxygen.

19.
Inorg Chem ; 59(22): 16703-16715, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33135894

RESUMO

We present the coordination-driven self-assembly of three tetranuclear metallacycles containing intracyclic NH2, OH, or OMe functionalities through the combination of various isophthalic acid building blocks with a divinylphenylene diruthenium complex. All new complexes of this study were characterized by means of nuclear magnetic resonance spectroscopy, ultrahigh-resolution ESI mass spectrometry, cyclic and square wave voltammetry and, in two cases, X-ray diffraction. The hydroxy functionalized macrocycle 4-BOH and the corresponding half-cycle 2-OH stand out, as their intracyclic OH···O hydrogen bonds stabilize their mixed-valent one- (2-OH, 4-BOH) and three-electron-oxidized states (4-BOH). Despite sizable redox splittings between all one-electron waves, the mixed-valent monocations and trications do not exhibit any intervalence charge-transfer band, assignable to through-bond electronic coupling, but nevertheless display distinct IR band shifts of their charge-sensitive Ru(CO) tags. We ascribe these seemingly contradicting observations to a redox-induced shuffling of the OH···O hydrogen bond(s) to the remaining, more electron-rich, reduced redox site.

20.
Inorg Chem ; 59(21): 15563-15569, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33081463

RESUMO

In nature, C-H bond oxidation of CH4 involves a peroxo intermediate that decays to the high-valent active species of either a "closed" {FeIV(µ-O)2FeIV} core or an "open" {FeIV(O)(µ-O)FeIV(O)} core. To mimic and to obtain more mechanistic insight in this reaction mode, we have investigated the reactivity of the bioinspired diiron complex [(susan){Fe(OH)(µ-O)Fe(OH)}]2+ [susan = 4,7-dimethyl-1,1,10,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazadecane], which catalyzes CH3OH oxidation with H2O2 to HCHO and HCO2H. The kinetics is faster in the presence of a proton. 18O-labeling experiments show that the active species, generated by a decay of the initially formed peroxo intermediate [(susan){FeIII(µ-O)(µ-O2)FeIII}]2+, contains one reactive oxygen atom from the µ-oxo and another from the µ-peroxo bridge of its peroxo precursor. Considering an FeIVFeIV active species, a "closed" {FeIV(µ-O)2FeIV} core explains the observed labeling results, while a scrambling of the terminal and bridging oxo ligands is required to account for an "open" {FeIV(O)(µ-O)FeIV(O)} core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...