Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958926

RESUMO

Wild species field cress (Lepidium campestre) has favorable agronomic traits, making it a good candidate for future development as an oil and catch crop. However, the species is very prone to pod shatter, resulting in severe yield losses. This is one of the important agronomic traits that needs to be improved in order to make this species economically viable. In this study, we cloned the L. campestre INDEHISCENT (LcIND) gene and prepared two LcIND-RNAi constructs with the IND promoter (long 400 bp and short 200 bp) from Arabidopsis. A number of stable transgenic lines were developed and evaluated in terms of pod shatter resistance. The majority of the transgenic lines showed increased resistance to pod shatter compared to the wild type, and this resistance was maintained in four subsequent generations. The downregulation of the LcIND gene by RNAi in the transgenic lines was confirmed by qRT-PCR analysis on T3 lines. Southern blot analysis showed that most of the analyzed lines had a single-copy integration of the transgene, which is desirable for further use. Our results show that it is possible to generate stable transgenic lines with desirable pod shatter resistance by downregulating the LcIND gene using RNAi in field cress, and thus speeding up the domestication process of this wild species.


Assuntos
Arabidopsis , Brassicaceae , Lepidium , Lepidium/genética , Interferência de RNA , Regulação para Baixo , Brassicaceae/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética
4.
Front Genome Ed ; 5: 1183791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051558

RESUMO

[This corrects the article DOI: 10.3389/fgeed.2021.757540.].

5.
Front Plant Sci ; 14: 1076704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755695

RESUMO

The wild species field cress (Lepidium campestre) has the potential to become a novel cover and oilseed crop for the Nordic climate. Its seed oil is however currently unsuitable for most food, feed, and industrial applications, due to the high contents of polyunsaturated fatty acids (PUFAs) and erucic acid (C22:1). As the biosynthesis of these undesirable fatty acids is controlled by a few well-known major dominant genes, knockout of these genes using CRISPR/Cas9 would thus be more effective in improving the seed oil quality. In order to increase the level of the desirable oleic acid (C18:1), and reduce the contents of PUFAs and C22:1, we targeted three important genes FATTY ACID ELONGASE1 (FAE1), FATTY ACID DESATURASE2 (FAD2), and REDUCED OLEATE DESATURASE1 (ROD1) using a protoplast-based CRISPR/Cas9 gene knockout system. By knocking out FAE1, we obtained a mutated line with almost no C22:1, but an increase in C18:1 to 30% compared with 13% in the wild type. Knocking out ROD1 resulted in an increase of C18:1 to 23%, and a moderate, but significant, reduction of PUFAs. Knockout of FAD2, in combination with heterozygous FAE1fae1 genotype, resulted in mutated lines with up to 66% C18:1, very low contents of PUFAs, and a significant reduction of C22:1. Our results clearly show the potential of CRISPR/Cas9 for rapid trait improvement of field cress which would speed up its domestication process. The mutated lines produced in this study can be used for further breeding to develop field cress into a viable crop.

6.
Front Genome Ed ; 3: 757540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870274

RESUMO

Field cress (Lepidium campestre) is a potential oilseed crop that has been under domestication in recent decades. CRISPR/Cas9 is a powerful tool for rapid trait improvement and gene characterization and for generating transgene-free mutants using protoplast transfection system. However, protoplast regeneration remains challenging for many plant species. Here we report an efficient protoplast regeneration and transfection protocol for field cress. Important factors such as type of basal media, type/combination of plant growth regulators, and culture duration on different media were optimized. Among the basal media tested, Nitsch was the best for protoplast growth in MI and MII media. For cell wall formation during the early stage of protoplast growth, relatively high auxin concentrations (0.5 mg L-1 NAA and 2,4-D), without addition of cytokinin was preferred for maintaining protoplast viability. After cell wall formation, 1.1 mg L-1 TDZ combined with either 0.05 mg L-1 NAA or 2,4-D was found to efficiently promote protoplast growth. On solid shoot induction medium, 1.1 mg L-1 TDZ without any auxin resulted in over 80% shoot generation frequency. A longer culture duration in MI medium would inhibit protoplast growth, while a longer culture duration in MII medium significantly delayed shoot formation. Using this optimized protoplast regeneration protocol, we have established an efficient PEG-mediated transfection protocol using a vector harboring the GFP gene, with transfection efficiencies of 50-80%. This efficient protoplast protocol would facilitate further genetic improvement of field cress via genome editing, and be beneficial to development of protoplast regeneration protocols for related plant species.

7.
Front Plant Sci ; 12: 680859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305978

RESUMO

Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3-4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l-1) and 2,4-D (0.5 mg l-1) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l-1 TDZ in combination with auxin 0.5 mg l-1 NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.

8.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257097

RESUMO

Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.


Assuntos
Afídeos/patogenicidade , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Interações Hospedeiro-Parasita , Lipoxigenase/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Animais , Afídeos/fisiologia , Fertilidade , Hordeum/enzimologia , Hordeum/parasitologia , Lipoxigenase/metabolismo , Óleos Voláteis/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Cell Rep ; 35(10): 2055-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27313135

RESUMO

KEY MESSAGE: Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype. Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.


Assuntos
Inativação Gênica , Lepidium/metabolismo , Ácido Oleico/metabolismo , Southern Blotting , Segregação de Cromossomos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Conformação Molecular , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Transformação Genética
10.
Front Plant Sci ; 7: 2032, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119714

RESUMO

The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop.

11.
BMC Plant Biol ; 13: 115, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23937221

RESUMO

BACKGROUND: Lepidium campestre is an undomesticated oilseed species with a great potential to become a new crop for both food and industrial feedstocks production. Genetic modification is needed for further improving the oil quantity and quality of Lepidium. Studies on in vitro shoot regeneration of Lepidium are very limited and there is no transformation protocol available. RESULTS: We have investigated the effects of different factors, especially the type, concentration and combination of plant growth regulators (PGRs) on in vitro shoot regeneration of Lepidium. The results showed that the 2,4-D treatment was crucial to shoot regeneration from different explants. The duration of 2,4-D exposure between 2-4 days did not show significant difference in shoot regeneration, while the effect of 2,4-D concentration varied greatly depending on the type of explants and cytokinins used, for example, the low concentration of 2,4-D combined with TDZ significantly increased the regeneration frequency of hypocotyls. Cotyledon and hypocotyl explants responded differently to cytokinin, for example, TDZ was more effective than zeatin in promoting shoot regeneration from hypocotyls, but did not affect the regeneration of cotyledons which was more affected by high concentration of zeatin. The results also showed that NAA was not effective for shoot regeneration. Germination in light increased the regeneration frequency compared to that in dark. After optimization of the different conditions, an efficient regeneration protocol was developed with the regeneration efficiency of 92.7%. Using this protocol, the transformation frequency of 6% in average was achieved. The presence of transgenes in the transgenic lines was confirmed by GUS staining, PCR and Southern blot analyses. CONCLUSION: Through systematic investigation of important factors affecting in vitro shoot regeneration, we have developed an efficient regeneration and transformation protocol for the genetic modification of Lepidium campestre. The method may also be applied to the related species.


Assuntos
Lepidium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Regeneração , Transformação Genética , Ácido 2,4-Diclorofenoxiacético , Citocininas/farmacologia , Engenharia Genética/métodos , Lepidium/genética , Compostos de Fenilureia/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Tiadiazóis/farmacologia , Zeatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA