Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957014

RESUMO

A simple, inexpensive and versatile patterned removal of C-C grafts has been realized for scalable multicomponent micropatterned functionalization.

2.
Angew Chem Int Ed Engl ; 62(47): e202313174, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37799095

RESUMO

Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ gRu -1 ⋅ h-1 at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO2 , and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.

3.
Nanoscale ; 15(9): 4301-4308, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756798

RESUMO

Self-assembled molecular networks (SAMNs) are formed by the spontaneous assembly of molecules on surfaces. On conductive atomically flat surfaces, and also at the liquid-solid interface, scanning tunneling microscopy (STM) can follow their growth dynamics. Desorption and adsorption dynamics are difficult to probe through the liquid-solid interface. Porous molecular networks are of particular interest because they may act as platforms for sensing and host-guest chemistry. Very little is known though about their stability, particularly in a liquid environment. To this end, we have investigated the desorption/adsorption dynamics of supramolecular porous monolayers of alkoxylated dehydrobenzo[12]annulene (DBA) derivatives at the interface between highly oriented pyrolytic graphite, the substrate, and 1-phenyloctane, the liquid. To trace the dynamics, structurally analogous chiral DBA derivatives were used as marker molecules, which co-assemble with the achiral ones forming the supramolecular network. This approach reveals the time scales of the adsorption/desorption dynamics, the significance of temperature, and the important role of the STM tip in inducing dynamics.

4.
Chem Sci ; 13(44): 13212-13219, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425498

RESUMO

Herein we report the impact of covalent modification (grafting), inducing lateral nanoconfinement conditions, on the self-assembly of a quinonoid zwitterion derivative into self-assembled molecular networks at the liquid/solid interface. At low concentrations where the compound does not show self-assembly behaviour on bare highly oriented pyrolytic graphite (HOPG), close-packed self-assembled structures are visualized by scanning tunneling microscopy on covalently modified HOPG. The size of the self-assembled domains decreases with increasing the density of grafted molecules, i.e. the molecules covalently bound to the surface. The dynamics of domains are captured with molecular resolution, revealing not only time-dependent growth and shrinkage processes but also the orientation conversion of assembled domains. Grafted pins play a key role in initiating the formation of on-surface molecular self-assembly and their stabilization, providing an elegant route to study various aspects of nucleation and growth processes of self-assembled molecular networks.

5.
J Am Chem Soc ; 144(1): 228-235, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962807

RESUMO

Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.

6.
J Am Chem Soc ; 143(29): 11080-11087, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34283574

RESUMO

We report on the detection and stabilization of a previously unknown two-dimensional (2D) pseudopolymorph of an alkoxy isophthalic acid using lateral nanoconfinement. The self-assembled molecular networks formed by the isophthalic acid derivative were studied at the interface between covalently modified graphite and an organic solvent. When self-assembled on graphite with moderate surface coverage of covalently bound aryl groups, a previously unknown metastable pseudopolymorph was detected. This pseudopolymorph, which was presumably "trapped" in between the surface bound aryl groups, underwent a time-dependent phase transition to the stable polymorph typically observed on pristine graphite. The stabilization of the pseudopolymorph was then achieved by using an alternative nanoconfinement strategy, where the domains of the pseudopolymorph could be formed and stabilized by restricting the self-assembly in nanometer-sized shallow compartments produced by STM-based nanolithography carried out on a graphite surface with a high density of covalently bound aryl groups. These experimental results are supported by molecular mechanics and molecular dynamics simulations, which not only provide important insight into the relative stabilities of the different structures, but also shed light onto the mechanism of the formation and stabilization of the pseudopolymorph under nanoscopic lateral confinement.


Assuntos
Grafite/química , Nanoestruturas/química , Ácidos Ftálicos/análise , Simulação de Dinâmica Molecular , Estrutura Molecular
7.
ACS Nano ; 13(5): 5559-5571, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31013051

RESUMO

A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/µm2) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.

8.
Chem Sci ; 10(13): 3881-3891, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015930

RESUMO

Halogen bonding has emerged as a promising tool in two-dimensional (2D) crystal engineering. Since halogen bonds are similar to hydrogen bonds in a number of aspects, the existing knowledge of hydrogen bonded systems can be applied to halogenated systems. Here we evaluate the applicability of a retrosynthetic approach based on topological similarity between hydrogen and halogen bonds to obtain predictable halogen bonded networks. The self-assembly of 1,3-dibromo-5-alkoxybenzene derivatives was studied in analogy with well-explored alkoxy isophthalic acids using a combination of experimental and theoretical tools. Scanning tunneling microscopy (STM) characterization of the networks formed at the liquid-graphite interface revealed that while the retrosynthetic approach works at the level of small clusters of molecules within the 2D network, the overall structure of the network deviates from the anticipated structure. The monolayers consist of fractured rows of halogen-bonded modules instead of the expected continuous lamellar structure. Each module consists of a discrete number of halogen-bonded molecules. The interactions responsible for the stabilization of halogen bonded dimers are delineated through detailed density functional theory (DFT) calculations coupled with natural bonding orbitals (NBO) and perturbation analysis. A modified force field that includes an extra charged site to imitate the σ hole on the halogen atom was developed and applied to extract total potential energies of the anticipated and observed networks. Plausible reasons for the deviation from the anticipated structure are discussed. Finally, a modified molecular design that allows successful application of the hydrogen bond-halogen bond analogy was tested experimentally.

9.
Chem Commun (Camb) ; 55(15): 2226-2229, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30706910

RESUMO

By using a novel protocol to spatially confine molecules in well-defined small 2D areas, the so-called nanocorrals, we show using scanning tunneling microscopy (STM) how this kind of confinement affects self-assembled molecular network (SAMN) formation at a liquid-solid interface. The 2D lateral confinement, imposed by the size of the nanocorrals, has a clear impact on the phase selectivity of a molecule that can form both low-density and high-density SAMNs, the high-density phase being promoted by the confinement.

10.
Nanoscale ; 10(31): 14993-15002, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30052249

RESUMO

Controlled double-deck packing is an appealing means to expand upon conventional 2D self-assembly which is critical in crystal engineering, yet it is rare and poorly understood. Herein, we report the first systematic study of double-deck assembly in a series of alkylated aminoquinone derivatives at the liquid-solid interface. The competition between the fraction of alkyl chains adsorbed on the surface and the optimal conformation of the alkyl chains near the head group leads to a stepwise structural transformation ranging from complete double-deck packing to complete monolayer packing. Alkyl chains on the bottom or top layer of the double-deck assemblies were selectively visualized by carefully tuning the scanning tunneling microscopy settings. A method to easily identify mirror image domains was discovered based on the coincidence of domain boundaries with a graphite main axis. The effect of molecular symmetry and metal complexation on the formation of the double-deck assembly was also explored. Based on 2D crystal engineering principles, this bottom-up double-deck assembly can potentially provide an essential toehold for constructing precise 3D hierarchical structures.

11.
ACS Appl Mater Interfaces ; 10(14): 12005-12012, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29485850

RESUMO

A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

12.
Nanoscale ; 10(4): 1680-1694, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29265120

RESUMO

Internal substituents can serve the double purpose of generating stereogenic centers and (potentially) being identifiable with Scanning Tunneling Microscopy (STM) in 2D self-assembled molecular layers. We investigate computationally the origin of stark contrast variations in STM images of chirally substituted self-assembled organic films. STM images of alkyl derivatives with secondary -CH3 and -OH groups have been simulated. Density functional theory calculations reveal bias-dependent contrast reversals in the substituent regions: a lack of local density of states in the relevant energy regime results in 'dark spots' in the simulated STM images, which turn bright upon increasing the bias voltage.

13.
Faraday Discuss ; 204: 215-231, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28840217

RESUMO

Chiral induction in self-assembled monolayers has garnered considerable attention in the recent past, not only due to its importance in chiral resolution and enantioselective heterogeneous catalysis but also because of its relevance to the origin of homochirality in life. Here, we demonstrate the emergence of homochirality in a supramolecular low-density network formed by achiral molecules at the interface of a chiral solvent and an atomically-flat achiral substrate. We focus on the impact of structure and functionality of the adsorbate and the chiral solvent on the chiral induction efficiency in self-assembled physisorbed monolayers, as revealed by scanning tunneling microscopy. Different induction mechanisms are proposed and evaluated, with the assistance of advanced molecular modeling simulations.

14.
Nanoscale ; 9(16): 5188-5193, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28393948

RESUMO

Altering the chemical reactivity of graphene can offer new opportunities for various applications. Here, we report that monolayers of densely packed n-pentacontane significantly reduce the covalent grafting of aryl radicals to graphitic surfaces. The effect is highly local in nature and on fully covered substrates grafting can occur only at monolayer imperfections such as interdomain borders and vacancy defects. Grafting partially covered substrates primarily results in the covalent modification of uncoated areas.

15.
Nanoscale ; 9(1): 362-368, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924342

RESUMO

Highly oriented pyrolytic graphite (HOPG) can be covalently grafted with aryl radicals generated via the electrochemical reduction of 3,5-bis-tert-butyl-diazonium cations (3,5-TBD). The structure of the grafted layer and its stability under electrochemical conditions were assessed with electrochemical scanning tunneling microscopy (EC-STM) and cyclic voltammetry (CV). Stable within a wide (>2.5 V) electrochemical window, the grafted species can be locally removed using EC-STM-tip nanolithography. Using dibenzyl viologen as an example, we show that the generated nanocorrals of bare graphitic surface can be used to study nucleation and growth of self-assembled structures under conditions of nanoconfinement and electrochemical potential control.

16.
Chemistry ; 22(41): 14633-9, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27554454

RESUMO

A convergent synthesis of racemic [6]hexahelicene-7-carboxylic acid by cross-coupling of a bicyclic and a tricyclic component is described. A metal-catalyzed ring-closure is also a fundamental component of the synthetic approach. Scanning tunneling microscopy (STM) measurements of the racemate self-assembled on Au(111) at liquid-solid interface revealed the formation of ordered racemic 2D crystals.

17.
Nat Chem ; 8(7): 711-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27325099

RESUMO

A dominant theme within the research on two-dimensional chirality is the sergeant-soldiers principle, wherein a small fraction of chiral molecules (sergeants) is used to skew the handedness of achiral molecules (soldiers) to generate a homochiral surface. Here, we have combined the sergeant-soldiers principle with temperature-dependent molecular self-assembly to unravel a peculiar chiral amplification mechanism at the solution-solid interface in which, depending on the concentration of a sergeant-soldiers solution, the majority handedness of the system can either be amplified or entirely reversed after an annealing step, furnishing a homochiral surface. Two discrete pathways that affect different stages of two-dimensional crystal growth are invoked for rationalizing this phenomenon and we present a set of experiments where the access to each pathway can be precisely controlled. These results demonstrate that a detailed understanding of subtle intermolecular and interfacial interactions can be used to induce drastic changes in the handedness of a supramolecular network.

18.
Chem Commun (Camb) ; 52(1): 68-71, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26514994

RESUMO

We have used a boroxine-based COF as a template for C60-fullerene self-assembly on graphite. Local removal of the COF by STM based nanomanipulation creates nanocorrals that may host other species.

19.
Chem Sci ; 7(12): 7028-7033, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451139

RESUMO

We demonstrate the use of covalently modified graphite as a convenient and powerful test-bed for the versatile investigation and control of 2-D crystallization at the liquid solid interface. Grafted aryls act as surface defects and create barriers to supramolecular self-assembly. An easily tunable grafting density allows for varying the effect of such defects on supramolecular self-assembly. Finally, the defects can be locally removed, triggering monolayer reconstructions and allowing in situ investigations of thermodynamically unstable or metastable morphologies.

20.
Chem Commun (Camb) ; 51(91): 16338-41, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404499

RESUMO

The potential of surface confined self-assembly to influence the chemical equilibrium of Schiff base formation and bias the yield and distribution of reaction products is explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...