Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(15): 6096-6104, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39148697

RESUMO

Perovskite solar cells (PSCs) are receiving renewed interest since they have reached high power conversion efficiency (PCE) and show potential for application not only on rigid and flexible substrates but also on mechanically deformable substrates for integration on nonplanar curvilinear surfaces. Here we demonstrate PSCs fabricated on transparent conducting oxide-free ultrathin polyethylene terephthalate substrates capable of efficiently harvesting indoor light even under compressive strain. Interface engineering with poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) improved the shunt resistance and band alignment at the perovskite-hole transport layer interface, which resulted in enhanced charge extraction, leading to 114% improvement in PCE from 5.57 to 11.91% under 500 lx indoor white LED (4000 K) illumination. The champion device exhibited a PCE of 18.37% under 250 lx cool white LED (4000 K) light. The maximum power output (P max) of the devices varied from 13.78 to 25.38 µW/cm2 by changing the indoor light illumination from 250 to 1000 lx, respectively. Moreover, the devices showed impressive performance even after mechanical deformation and retained 83 and 76% for 1 sun and indoor light, respectively, under 30% compressive strain. Our approach paves the way for fabrication of efficient indoor light harvesting PSCs on mechanically deformable substrates for integration on nonplanar surfaces prone to compressive strain.

2.
ACS Appl Energy Mater ; 7(9): 3558-3576, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38756867

RESUMO

In this work, tin sulfide nanosheets decorated on face-mask-derived activated carbon have been explored as electrode material for electrochemical supercapacitors. A hydrothermal route was employed to grow tin sulfide on the surface and inside of high-surface-area face-mask-derived activated carbon, activated at 850 °C, to produce a hierarchical interconnected porous composite (ACFM-850/TS) structure. The presence of tin sulfide in the porous carbon framework exposed the surface active sites for rapid adsorption/desorption of electrolyte ions and ensured high utilization of the porous carbon surface. Furthermore, the porous ACFM-850 framework prevented the stacking/agglomeration of tin sulfide sheets, thereby enhancing the charge-transport kinetics in the composite electrodes. Benefiting from the synergistic effect of tin sulfide and ACFM-850, the resulting ACFM-850/TS composite exhibited an attractive specific capacitance of 423 F g-1 at a 0.5 A g-1 current density and superior rate capability (71.3% at a 30 A g-1 current density) in a 1.0 M Na2SO4 electrolyte. In addition, we fabricated a planar symmetric interdigitated supercapacitor on a stretchable Spandex fabric using an ACFM-850/TS composite electrode and carboxymethyl cellulose/NaClO4 as a solid-state gel electrolyte employing a scalable screen-printing process. The as-prepared stretchable supercapacitors displayed an ultrahigh energy density of 9.2 µWh cm-2 at a power density of 0.13 mW cm-2. In addition, they exhibited an excellent cyclic stability of 64% even after 10,000 charge-discharge cycles and 42% after 1000 continuous stretch (at 25% stretching)/release cycles. Such screen-printed interdigitated planar supercapacitors with activated carbon composite electrodes and a solid-state gel electrolyte act as promising low-cost energy-storage devices for wearable and flexible integrated electronic devices.

3.
RSC Adv ; 14(18): 12781-12795, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645514

RESUMO

Upcycling Covid19 plastic waste into valuable carbonaceous materials for energy storage applications is a sustainable and green approach to minimize the burden of waste plastic on the environment. Herein, we developed a facile single step activation technique for producing activated carbon consisting of spherical flower like carbon nanosheets and amorphous porous flakes from used PET [poly(ethylene terephthalate)] face shields for supercapacitor applications. The as-obtained activated carbon exhibited a high specific surface area of 1571 m2 g-1 and pore volume of 1.64 cm3 g-1. The specific capacitance of these carbon nanostructure-coated stainless steel electrodes reached 228.2 F g-1 at 1 A g-1 current density with excellent charge transport features and good rate capability in 1 M Na2SO4 aqueous electrolyte. We explored the slot-die coating technique for large-area coatings of flexible high-performance activated carbon electrodes with special emphasis on optimizing binder concentration. Significant improvement in electrochemical performance was achieved for the electrodes with 15 wt% Nafion concentration. The flexible supercapacitors fabricated using these electrodes showed high energy and power density of 21.8 W h kg-1 and 20 600 W kg-1 respectively, and retained 96.2% of the initial capacitance after 10 000 cycles at 2 A g-1 current density. The present study provides a promising sustainable approach for upcycling PET plastic waste for large area printable supercapacitors.

4.
Energy Fuels ; 37(23): 19248-19265, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38094909

RESUMO

Porous activated carbons from four types of corn derivatives (husk, fiber, grain, and cob) are compared for the first time regarding their structural, morphological, and electrochemical characteristics for application as electrode materials in flexible supercapacitors. Benefiting from its hierarchical porous structure, appropriate amount of N and O functional groups, large specific surface area (1804 m2 g-1), and high degree of graphitization, the activated carbon from corn grains displayed the best electrochemical performance as an electrode material for supercapacitor applications; when tested in a three-electrode configuration, it had a high specific capacitance (411 F g-1 at 1.0 A g-1) and an excellent rate capacity (85.7% capacitance retention at 30 A g-1) in an aqueous 6 M KOH electrolyte. The high specific surface area and high degree of graphitization of the activated carbon from corn grains (AC grain) played crucial roles in its excellent energy storage performance. Most importantly, the flexible supercapacitor that was assembled with slot-die coated AC grain electrodes and a hydroxyethyl cellulose (HEC)/KOH biopolymer electrolyte delivered an outstanding electrochemical performance with an energy density of 31.1 Wh kg-1 at 215 W kg-1 and ultrahigh cyclic stability (91.3% capacitance retention after 10 000 cycles at a current density of 5 A g-1). Also, the assembled flexible supercapacitor maintained an energy density of 20.03 Wh kg-1 even under a high power density of 28.01 kW kg-1. These findings conclude that the porous carbon material obtained from corn grains has enormous potential as a high-performance electrode material for supercapacitors.

5.
ACS Omega ; 8(46): 43556-43572, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027343

RESUMO

In this study, BiOI-sensitized TiO2 (BiOI/TiO2) nanocomposites with different levels of BiOI deposited via sequential ionic layer adsorption and reaction (SILAR) have been explored for the degradation of methyl orange, 4-chlorophenol (4-CP), and crude oil in water under visible (>400 nm) irradiation with excellent degradation performance. The reaction progress for methyl orange and 4-chlorophenol was monitored by a UV-vis spectrophotometer, and the degradation of the crude oil hydrocarbons was determined by GC-MS. The BiOI/TiO2 heterojunction improves separation of photogenerated charges, which enhances the degradation efficiency. Evaluation of the visible-light photocatalytic performance of the synthesized catalysts against methyl orange degradation confirmed that four SILAR cycles are the optimal deposition condition for the best degradation efficiency. The efficiency was further confirmed by degrading 4-CP and crude oil, achieving 38.30 and 85.62% degradation, respectively, compared with 0.0% (4-CP) and 70.56% (crude oil) achieved by TiO2. The efficiency of TiO2 in degrading crude oil was mainly due to adsorption along with photolysis. This study provides a simple and cost-effective alternative to traditional remediation methods requiring high energy consumption for remediation of crude oil-polluted water and refinery wastewater using visible-light photocatalysis along with adsorption.

6.
Environ Sci Pollut Res Int ; 30(2): 4151-4165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35963971

RESUMO

COVID-19-led antibiotic waste generated from hospitals and health centres may cause serious health issues and significantly impact the environment. In the coming decades, antibiotic resistance will be one of the most significant threats to global human health. Photocatalytic water remediation is an effective and promising environmental solution that can be utilized to address this issue, to convert antibiotic waste into non-toxic products by utilizing renewable and abundant solar energy. In the present study, a novel nanocomposite of zeolitic imidazolate frameworks (ZIF-8) and molybdenum diselenide (MoSe2) was efficiently synthesized by the solvothermal method for the complete degradation of the antibiotics and textile waste from water. The morphology, crystallinity and band gap of the samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-visible spectroscopy. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) provide the binding information of the sample. The photocatalytic activity was tested for degradation of the antibiotics (tetracycline hydrochloride (TC) and metronidazole (MNZ)) used in COVID-19 treatment and textile dye (malachite green). Time-resolved photoluminescence spectroscopy confirmed the enhanced charge separation in the MoSe2@ZIF-8 nanocomposite with an average lifetime of 4.72 ns as compared to pristine samples. The nanocomposite showed ~ 100% removal efficiency with rate constants of 63 × 10-3, 49 × 10-3 and 42 × 10-3 min-1 for TC, MNZ and malachite green, respectively. The photocatalytic degradation of TC was carried out under different pH conditions (4, 7 and 9), and the degradation mechanism was explained on the basis of zeta potential measurements and active species trapping experiment. The by-products of the photocatalytic treatment of TC antibiotics were tested using liquid chromatography-mass spectroscopy (LC-MS), and they were found to be non-toxic for aquatic and human life. The regeneration property of the nanocomposite was confirmed by FESEM with regeneration efficiency of 88.7% in the 4th cycle. Thus, MoSe2@ZIF-8-based photocatalysts have potential application in water remediation, especially in making the antibiotic waste less toxic.


Assuntos
COVID-19 , Nanocompostos , Zeolitas , Humanos , Antibacterianos , Águas Residuárias , Tratamento Farmacológico da COVID-19 , Nanocompostos/química , Metronidazol , Água , Catálise
7.
ACS Appl Energy Mater ; 5(12): 14669-14679, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36590877

RESUMO

Indoor light-energy-harvesting solar cells have long-standing history with perovskite solar cells (PSCs) recently emerging as potential candidates with high power conversion efficiencies (PCEs). However, almost all of the reported studies on indoor light-harvesting solar cells utilize white light in the visible wavelength. Low wavelength near-ultraviolet (UV) lights used under indoor environments are not given attention despite their high photon energy. In this study, perovskite solar cells have been investigated for the first time for harvesting energy from a commercially available near-UV (UV-A) indoor LED light (395-400 nm). Also called black lights, these near-UV lights are commonly used for decoration (e.g., in bars, pubs, aquariums, parties, clubs, body art studios, neon lights, and Christmas and Halloween decorations). The optimized perovskite solar cells with the n-i-p architecture using the CH3NH3PbI3 absorber were fabricated and characterized under different illumination intensities of near-UV indoor LEDs. The champion devices delivered a PCE and power output of 20.63% and 775.86 µW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. The devices retained 84.10% of their initial PCE when aged under near-UV light for 24 h. The effects of UV exposure on the device performance have been comprehensively characterized. Furthermore, UV-stable solar cells fabricated with a modified electron transport layer retained 95.53% of its initial PCE after 24 h UV exposure. The champion devices delivered enhanced PCE and power output of 26.19% and 991.21 µW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. This work opens up a novel direction for energy harvesting from near-UV indoor light sources for applications in microwatt-powered electronics such as internet of things sensors.

8.
Rev Sci Instrum ; 85(6): 063109, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985801

RESUMO

The internal photoluminescent quantum yield (iPLQY)--defined as the ratio of emitted photons to those absorbed--is an important parameter in the evaluation and application of luminescent materials. The iPLQY is rarely reported due to the complexities in the calibration of such a measurement. Herein, an experimental method is proposed to correct for re-emission, which leads to an underestimation of the absorption under broadband excitation. Although traditionally the iPLQY is measured using monochromatic sources for linear materials, this advancement is necessary for nonlinear materials with wavelength dependent iPLQY, such as the application of up-conversion to solar energy harvesting. The method requires an additional measurement of the emission line shape that overlaps with the excitation and absorption spectra. Through scaling of the emission spectrum, at the long wavelength edge where an overlap of excitation does not occur, it is possible to better estimate the value of iPLQY. The method has been evaluated for a range of nonlinear material concentrations and under various irradiances to analyze the necessity and boundary conditions that favor the proposed method. Use of this refined method is important for a reliable measurement of iPLQY under a broad illumination source such as the Sun.

9.
Opt Express ; 22 Suppl 2: A452-64, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922255

RESUMO

Concentrating optics are integrated into up-conversion photovoltaic (UC-PV) devices to independently concentrate sub-band-gap photons on the up-conversion layer, without affecting the full solar concentration on the overlying solar cell. The UC-PV devices consist of silicon solar cells optimized for up-conversion, coupled with tapered and parabolic dielectric concentrators, and hexagonal sodium yttrium fluoride (ß-NaYF4) up-converter doped with 25% trivalent erbium (Er³âº). A normalized external quantum efficiency of 1.75x10⁻² cm²/W and 3.38x10⁻² cm²/W was obtained for the UC-PV device utilizing tapered and parabolic concentrators respectively. Although low to moderate concentration was shown to maximize UC, higher concentration lead to saturation and reduced external quantum efficiency. The presented work highlights some of the implications associated with the development of UC-PV devices and designates a substantial step for integration in concentrating PV.

10.
Opt Express ; 20 Suppl 6: A879-87, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187664

RESUMO

The upconversion photoluminescent quantum yield (PLQY) of erbium-doped hexagonal sodium yttrium fluoride (ß-NaYF(4): 10% Er(3+) was measured under broadband excitation with full width half maxima ranging from 12 to 80 nm. A novel method was developed to increase the bandwidth of excitation, while remaining independent of power via normalization to the air mass 1.5 direct solar spectrum. The measurements reveal that by broadening the excitation spectrum a higher PLQY can be achieved at lower solar concentrations. The highest PLQY of 16.2 ± 0.5% was achieved at 2270 ± 100 mW mm(-2) and is the highest ever measured.

11.
Opt Express ; 20(23): A879-87, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23326835

RESUMO

The upconversion photoluminescent quantum yield (PLQY) of erbium-doped hexagonal sodium yttrium fluoride (ß-NaYF(4): 10% Er(3+)) was measured under broadband excitation with full width half maxima ranging from 12 to 80 nm. A novel method was developed to increase the bandwidth of excitation, while remaining independent of power via normalization to the air mass 1.5 direct solar spectrum. The measurements reveal that by broadening the excitation spectrum a higher PLQY can be achieved at lower solar concentrations. The highest PLQY of 16.2 ± 0.5% was achieved at 2270 ± 100 mW mm(-2) and is the highest ever measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA