Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628753

RESUMO

Genome comparison between the maize pathogens Ustilago maydis and Sporisorium reilianum revealed a large diversity region (19-1) containing nearly 30 effector gene candidates, whose deletion severely hampers virulence of both fungi. Dissection of the S. reilianum gene cluster resulted in the identification of one major contributor to virulence, virulence-associated gene 2 (vag2; sr10050). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) experiments revealed high expression of vag2 during biotrophic growth of S. reilianum. Using the yeast secretion trap assay, we confirmed the existence of a functional signal peptide allowing protein secretion via the conventional secretory pathway. We identified the cytoplasmic maize chorismate mutase ZmCM2 by yeast two-hybrid screening as a possible interaction partner of Vag2. Interaction of the two proteins in planta was confirmed by bimolecular fluorescence complementation. qRT-PCR experiments revealed vag2-dependent downregulation of salicylic acid (SA)-induced genes, which correlated with higher SA levels in plant tissues colonized by Δvag2 deletion strains relative to S. reilianum wildtype strains. Metabolite analysis suggested rewiring of pathogen-induced SA biosynthesis by preferential conversion of the SA precursor chorismate into the aromatic amino acid precursor prephenate by ZmCM2 in the presence of Vag2. Possibly, the binding of Vag2 to ZmCM2 inhibits the back reaction of the ZmCM2-catalyzed interconversion of chorismate and prephenate, thus contributing to fungal virulence by lowering the plant SA-induced defenses.

2.
Front Plant Sci ; 11: 594827, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312187

RESUMO

Plants have evolved adaptive measures to cope with abiotic and biotic challenges simultaneously. Combinatorial stress responses require environmental signal integration and response prioritization to balance stress adaptation and growth. We have investigated the impact of salt, an important environmental factor in arid regions, on the Arabidopsis innate immune response. Activation of a classical salt stress response resulted in increased susceptibility to infection with hemibiotrophic Pseudomonas syringae or necrotrophic Alternaria brassicicola, and Botrytis cinerea, respectively. Surprisingly, pattern-triggered immunity (PTI)-associated responses were largely unaffected upon salt pre-treatment. However, we further observed a strong increase in phytohormone levels. Particularly, abscisic acid (ABA) levels were already elevated before pathogen infection, and application of exogenous ABA substituted for salt-watering in increasing Arabidopsis susceptibility toward B. cinerea infection. We propose a regulatory role of ABA in attenuating Botrytis immunity in this plant under salt stress conditions.

3.
Mol Plant Microbe Interact ; 32(9): 1095-1109, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365325

RESUMO

Verticillium longisporum is a vascular fungal pathogen leading to severe crop loss, particular in oilseed rape. Transcription factors (TF) are highly suited for genetic engineering of pathogen-resistant crops, as they control sets of functionally associated genes. Applying the AtTORF-Ex (Arabidopsis thaliana transcription factor open reading frame expression) collection, a simple and robust screen of TF-overexpressing plants was established displaying reduced fungal colonization. Distinct members of the large ethylene response factor (ERF) family, namely ERF96 and the six highly related subgroup IXb members ERF102 to ERF107, were identified. Whereas overexpression of these ERF significantly reduces fungal propagation, single loss-of-function approaches did not reveal altered susceptibility. Hence, this gain-of-function approach is particularly suited to identify redundant family members. Expression analyses disclosed distinct ERF gene activation patterns in roots and leaves, suggesting functional differences. Transcriptome studies performed on chemically induced ERF106 expression revealed an enrichment of genes involved in the biosynthesis of antimicrobial indole glucosinolates (IG), such as CYP81F2 (CYTOCHROME P450-MONOOXYGENASE 81F2), which is directly regulated by IXb-ERF via two GCC-like cis-elements. The impact of IG in restricting fungal propagation was further supported as the cyp81f2 mutant displayed significantly enhanced susceptibility. Taken together, this proof-of-concept approach provides a novel strategy to identify candidate TF that are valuable genetic resources for engineering or breeding pathogen-resistant crop plants.


Assuntos
Cruzamento , Resistência à Doença , Engenharia Genética , Fatores de Transcrição , Verticillium , Brassica rapa/microbiologia , Resistência à Doença/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Fatores de Transcrição/genética
4.
Biotechnol Biofuels ; 11: 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507605

RESUMO

BACKGROUND: Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. RESULTS: For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae. To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi (AbWSD1) and Marinobacter aquaeolei (MaWS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei (MaFAR) with AbWSD1 or MaWS2 led to a high incorporation of C18 substrates in wax esters. The MaFAR/TMMmAWAT2-AbWSD1 combination resulted in the incorporation of more C18:1 alcohol and C18:0 acyl moieties into wax esters compared with MaFAR/AbWSD1. The fusion protein of a WS from Simmondsia chinensis (ScWS) with MaFAR exhibited higher specificity toward C20:1 substrates in preference to C18:1 substrates. Expression of MaFAR/AbWSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by MaFAR/AbWSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina, lines expressing MaFAR/ScWS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed-1 of wax esters, containing 27-34 mol% oleyl oleate. CONCLUSIONS: The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

5.
PLoS One ; 11(10): e0164673, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736949

RESUMO

Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.


Assuntos
Betaína/metabolismo , Diatomáceas/metabolismo , Ácidos Graxos/metabolismo , Heptoses/metabolismo , Metaboloma , Nitrogênio/metabolismo , Triglicerídeos/metabolismo , Acil Coenzima A/análise , Betaína/química , Biomassa , Ciclo do Ácido Cítrico , Diatomáceas/crescimento & desenvolvimento , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Luz , Metaboloma/efeitos da radiação
6.
Plant Cell ; 28(7): 1616-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27354555

RESUMO

The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Morte Celular/fisiologia , Relógios Circadianos/fisiologia , Ciclopentanos/metabolismo , Citocininas/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular/genética , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Luz , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 6: 22181, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916792

RESUMO

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.


Assuntos
Reatores Biológicos , Brassicaceae/metabolismo , Produtos Agrícolas/metabolismo , Engenharia Metabólica , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Brassicaceae/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
8.
Plant Biotechnol J ; 14(1): 252-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25912558

RESUMO

Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.


Assuntos
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Ésteres/metabolismo , Ácidos Oleicos/biossíntese , Óleos de Plantas/metabolismo , Sementes/metabolismo , Ceras/metabolismo , Aciltransferases/metabolismo , Aldeído Oxirredutases/metabolismo , Vias Biossintéticas , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Mutagênese Insercional/genética , Mutação/genética , Especificidade por Substrato
9.
Plant Cell ; 27(4): 1082-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25901085

RESUMO

Diphosphorylated inositol polyphosphates, also referred to as inositol pyrophosphates, are important signaling molecules that regulate critical cellular activities in many eukaryotic organisms, such as membrane trafficking, telomere maintenance, ribosome biogenesis, and apoptosis. In mammals and fungi, two distinct classes of inositol phosphate kinases mediate biosynthesis of inositol pyrophosphates: Kcs1/IP6K- and Vip1/PPIP5K-like proteins. Here, we report that PPIP5K homologs are widely distributed in plants and that Arabidopsis thaliana VIH1 and VIH2 are functional PPIP5K enzymes. We show a specific induction of inositol pyrophosphate InsP8 by jasmonate and demonstrate that steady state and jasmonate-induced pools of InsP8 in Arabidopsis seedlings depend on VIH2. We identify a role of VIH2 in regulating jasmonate perception and plant defenses against herbivorous insects and necrotrophic fungi. In silico docking experiments and radioligand binding-based reconstitution assays show high-affinity binding of inositol pyrophosphates to the F-box protein COI1-JAZ jasmonate coreceptor complex and suggest that coincidence detection of jasmonate and InsP8 by COI1-JAZ is a critical component in jasmonate-regulated defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fosfatos de Inositol/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
10.
Plant Cell Physiol ; 56(2): 346-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416291

RESUMO

The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Especificidade de Órgãos , Oxirredutases/metabolismo , Plastídeos/enzimologia , Ácido Abscísico/metabolismo , Secas , Membranas Intracelulares/enzimologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico , Tilacoides
11.
Plant Cell ; 25(12): 4894-911, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24326589

RESUMO

The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Transporte Biológico , Vesículas Revestidas por Clatrina/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Polaridade Celular , Endocitose , Proteínas de Fluorescência Verde/análise , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
12.
Plant Methods ; 9(1): 24, 2013 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23829499

RESUMO

BACKGROUND: Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. RESULTS: We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. CONCLUSIONS: We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester.

13.
New Phytol ; 196(4): 1086-1097, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025549

RESUMO

In Arabidopsis, the fatty acid moiety of sphingolipids is mainly α-hydroxylated. The consequences of a reduction in this modification were analysed. Mutants of both Fatty Acid Hydroxylase genes (AtFAH1 and AtFAH2) were analysed for sphingolipid profiles. To elucidate further consequences of the mutations, metabolic analyses were performed and the influence on pathogen defence was determined. Ceramide and glucosylceramide profiles of double-mutant plants showed a reduction in sphingolipids with α-hydroxylated fatty acid moieties, and an accumulation of sphingolipids without these moieties. In addition, the free trihydroxylated long-chain bases and ceramides were increased by five- and ten-fold, respectively, whereas the amount of glucosylceramides was decreased by 25%. Metabolite analysis of the double mutant revealed salicylates as enriched metabolites. Infection experiments supported the metabolic changes, as the double mutant showed an enhanced disease-resistant phenotype for infection with the obligate biotrophic pathogen Golovinomyces cichoracearum. In summary, these results suggest that fatty acid hydroxylation of ceramides is important for the biosynthesis of complex sphingolipids. Its absence leads to the accumulation of long-chain bases and ceramides as their precursors. This increases salicylate levels and resistance towards obligate biotrophic fungal pathogens, confirming a role of sphingolipids in salicylic acid-dependent defence reactions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ceramidas/metabolismo , Oxigenases de Função Mista/genética , Esfingolipídeos/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/patogenicidade , Regulação da Expressão Gênica de Plantas , Hidroxilação , Oxigenases de Função Mista/metabolismo , Mutação , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Esfingolipídeos/metabolismo , Verticillium/patogenicidade
14.
J Lipid Res ; 53(10): 2153-2161, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878160

RESUMO

Wax esters are neutral lipids exhibiting desirable properties for lubrication. Natural sources have traditionally been whales. Additionally some plants produce wax esters in their seed oil. Currently there is no biological source available for long chain length monounsaturated wax esters that are most suited for industrial applications. This study aimed to identify enzymatic requirements enabling their production in oilseed plants. Wax esters are generated by the action of fatty acyl-CoA reductase (FAR), generating fatty alcohols and wax synthases (WS) that esterify fatty alcohols and acyl-CoAs to wax esters. Based on their substrate preference, a FAR and a WS from Mus musculus were selected for this study (MmFAR1 and MmWS). MmWS resides in the endoplasmic reticulum (ER), whereas MmFAR1 associates with peroxisomes. The elimination of a targeting signal and the fusion to an oil body protein yielded variants of MmFAR1 and MmWS that were cotargeted and enabled wax ester production when coexpressed in yeast or Arabidopsis. In the fae1 fad2 double mutant, rich in oleate, the cotargeted variants of MmFAR1 and MmWS enabled formation of wax esters containing >65% oleyl-oleate. The data suggest that cotargeting of unusual biosynthetic enzymes can result in functional interplay of heterologous partners in transgenic plants.


Assuntos
Aciltransferases/metabolismo , Aldeído Oxirredutases/metabolismo , Óleos de Plantas/metabolismo , Ceras/química , Aciltransferases/genética , Aldeído Oxirredutases/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Ésteres/química , Ésteres/metabolismo , Camundongos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Especificidade por Substrato , Ceras/metabolismo
15.
Plant Physiol ; 159(3): 1192-203, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22635114

RESUMO

Verticillium longisporum is a soil-borne vascular pathogen that causes reduced shoot growth and early senescence in Arabidopsis (Arabidopsis thaliana). Here, we report that these disease symptoms are less pronounced in plants that lack the receptor of the plant defense hormone jasmonic acid (JA), CORONATINE INSENSITIVE1 (COI1). Initial colonization of the roots was comparable in wild-type and coi1 plants, and fungal DNA accumulated to almost similar levels in petioles of wild-type and coi1 plants at 10 d post infection. Completion of the fungal life cycle was impaired in coi1, as indicated by the reduced number of plants with microsclerotia, which are detected on dead plant material at late stages of the disease. Contrary to the expectation that the hormone receptor mutant coi1 should display the same phenotype as the corresponding hormone biosynthesis mutant delayed dehiscence2 (dde2), dde2 plants developed wild-type-like disease symptoms. Marker genes of the JA and the JA/ethylene defense pathway were induced in petioles of wild-type plants but not in petioles of dde2 plants, indicating that fungal compounds that would activate the known COI1-dependent signal transduction chain were absent. Grafting experiments revealed that the susceptibility-enhancing COI1 function acts in the roots. Moreover, we show that the coi1-mediated tolerance is not due to the hyperactivation of the salicylic acid pathway. Together, our results have unraveled a novel COI1 function in the roots that acts independently from JA-isoleucine or any JA-isoleucine mimic. This COI1 activity is required for a yet unknown root-to-shoot signaling process that enables V. longisporum to elicit disease symptoms in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Feixe Vascular de Plantas/microbiologia , Verticillium/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Contagem de Colônia Microbiana , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Mutação/genética , Oxilipinas/farmacologia , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/efeitos dos fármacos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Verticillium/efeitos dos fármacos , Verticillium/crescimento & desenvolvimento
16.
Mol Plant ; 5(6): 1389-402, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22522512

RESUMO

The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex, respectively. Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors, stress-, and defense-related genes. Here, we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites. Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites. In Verticillium-infected roots, we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1), but no increase in antifungal IGS breakdown products. In contrast, indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro. Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms, a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility. Hence, our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Ativação Transcricional , Triptofano/metabolismo , Verticillium/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Glucosinolatos/metabolismo , Indóis/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico/genética , Tiazóis/metabolismo , Transcrição Gênica
17.
Plant Physiol ; 159(1): 391-402, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22452854

RESUMO

Plants modify harmful substances through an inducible detoxification system. In Arabidopsis (Arabidopsis thaliana), chemical induction of the cytochrome P450 gene CYP81D11 and other genes linked to the detoxification program depends on class II TGA transcription factors. CYP81D11 expression is also induced by the phytohormone jasmonic acid (JA) through the established pathway requiring the JA receptor CORONATINE INSENSITIVE1 (COI1) and the JA-regulated transcription factor MYC2. Here, we report that the xenobiotic- and the JA-dependent signal cascades have become interdependent at the CYP81D11 promoter. On the one hand, MYC2 can only activate the expression of CYP81D11 when both the MYC2- and the TGA-binding sites are present in the promoter. On the other hand, the xenobiotic-regulated class II TGA transcription factors can only mediate maximal promoter activity if TGA and MYC2 binding motifs, MYC2, and the JA-isoleucine biosynthesis enzymes DDE2/AOS and JAR1 are functional. Since JA levels and degradation of JAZ1, a repressor of the JA response, are not affected by reactive chemicals, we hypothesize that basal JA signaling amplifies the response to chemical stress. Remarkably, stress-induced expression levels were 3-fold lower in coi1 than in the JA biosynthesis mutant dde2-2, [corrected] revealing that COI1 can contribute to the activation of the promoter in the absence of JA. Moreover, we show that deletion of the MYC2 binding motifs abolishes the JA responsiveness of the promoter but not the responsiveness to COI1. These findings suggest that yet unknown cis-element(s) can mediate COI1-dependent transcriptional activation in the absence of JA.


Assuntos
Arabidopsis/genética , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Oxilipinas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Xenobióticos/farmacologia , Motivos de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Benzoxazóis/farmacologia , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxilipinas/farmacologia , Plasmídeos/genética , Plasmídeos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Ativação Transcricional , Transformação Genética , Ácidos Tri-Iodobenzoicos/farmacologia
18.
New Phytol ; 192(4): 841-854, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883234

RESUMO

The bioactive lipid ceramide is produced by the enzyme ceramide synthase, which exists in several isoforms in most eukaryotic organisms. Here, we investigated functional differences between the three ceramide synthase isoforms in Arabidopsis thaliana. The biochemical properties of the three ceramide synthases were investigated by comparing lipid profiles of yeast strains expressing LOH1, LOH2 or LOH3 with those of wild-type and loh1, loh2 and loh3 knockout plants. Expression profiles of the ceramide synthases and of the pathogenesis-related gene PR-1 were investigated by real-time PCR. Each ceramide synthase isoform showed a characteristic preference regarding acyl-CoA chain length as well as sphingoid base hydroxylation, which matches the pattern of ceramide and glucosylceramide species found in leaves. After extended culture under short-day conditions, loh1 plants showed spontaneous cell death accompanied by enhanced expression of PR-1. The levels of free trihydroxy sphingoid bases as well as ceramide and glucosylceramide species with C(16) fatty acid were significantly elevated while species with C(20) -C(28) fatty acids were reduced. These data suggest that spontaneous cell death in the loh1 line is triggered either by the accumulation of free trihydroxy sphingoid bases or ceramide species with C(16) fatty acid.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , DNA Bacteriano/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Glucosilceramidas/metabolismo , Hidroxilação , Mutagênese Insercional/genética , Oxirredutases/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingosina/metabolismo , Fatores de Tempo
19.
Plant Physiol ; 156(4): 2037-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21653782

RESUMO

Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed "leafy ear" and "eary ear." In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development.


Assuntos
Basidiomycota/fisiologia , Inflorescência/anatomia & histologia , Inflorescência/microbiologia , Doenças das Plantas/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Meristema/anatomia & histologia , Meristema/genética , Meristema/microbiologia , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Zea mays/anatomia & histologia , Zea mays/genética
20.
Plant J ; 63(1): 155-66, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20409000

RESUMO

Expression of BZI-1 Delta N, a dominant-negative form of the tobacco (Nicotiana tabacum) basic leucine zipper (bZIP) transcription factor BZI-1 leads to severe defects in pollen development which coincides with reduced transcript abundance of the stamen specific invertase gene NIN88 and decreased extracellular invertase enzymatic activity. This finding suggests a function of BZI-1 in regulating carbohydrate supply of the developing pollen. BZI-1 heterodimerises with the bZIP factors BZI-2, BZI-3 and BZI-4 in vitro and in planta. Whereas BZI-1 exhibits only weak activation properties, BZI-1/BZI-2 heterodimers strongly activate transcription. Consistently, approaches leading to reduced levels of functional BZI-1 or BZI-2 both significantly interfere with pollen development, auxin responsiveness and carbohydrate partitioning. In situ hybridisation studies for BZI-1 and BZI-2 confirmed temporal and spatial overlapping expression patterns in tapetum and pollen supporting functional cooperation of these factors during pollen development. Plants over-expressing BZI-4 produce significantly reduced amounts of intact pollen and are also impaired in NIN88 transcription and enzymatic activity. BZI-4 homodimer efficiently binds to a G-box located in the NIN88 promoter but exhibits almost no transcriptional activation capacity. As BZI-4 does not actively repress transcription, we propose that its homodimer blocks G-box mediated transcription. In summary, these data support a regulatory model in which BZI-4 homodimers and BZI-1/BZI-2 heterodimers perform opposing functions as negative or positive transcriptional regulators during pollen development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Nicotiana/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/metabolismo , Interferência de RNA , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...