Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(6): 646-660, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36628654

RESUMO

Freshwater ecosystems are of worldwide importance for maintaining biodiversity and sustaining the provision of a myriad of ecosystem services to modern societies. Plants, one of the most important components of these ecosystems, are key to water nutrient removal, carbon storage, and food provision. Understanding how the functional connection between freshwater plants and ecosystems is affected by global change will be key to our ability to predict future changes in freshwater systems. Here, we synthesize global plant responses, adaptations, and feedbacks to present-day and future freshwater environments through trait-based approaches, from single individuals to entire communities. We outline the transdisciplinary knowledge benchmarks needed to further understand freshwater plant biodiversity and the fundamental services they provide.


Assuntos
Ecossistema , Água Doce , Biodiversidade , Água , Plantas
2.
Sci Total Environ ; 786: 147491, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33965814

RESUMO

Patterns of species rarity have long fascinated ecologists, yet most of what we know about the natural world stems from studies of common species. A large proportion of freshwater plant species has small range sizes and are therefore considered rare. However, little is known about the mechanisms and geographical distribution of rarity in the aquatic realm and to what extent diversity of rare species in freshwater plants follows their terrestrial counterparts. Here, we present the first in-depth analysis of geographical patterns, potential deterministic ecogeographical factors and projected scenarios of freshwater vascular plant rarity using 50 × 50 km grid cells across Europe (41°N-71°N) and North America (25°N-78°N). Our results suggest that diversity of rare species shows different patterns in relation to latitude on the two continents, and that hotspots of rarity concentrate in a relatively small proportion of the European and North American land surface, especially in mountainous as well as in climatically rare and stable areas. Interestingly, we found no differences among alternative rarity definitions and measures when delineating areas with notably high diversity of rare species. Our findings also indicate that few variables, namely a combination of current climate, Late Quaternary climate-change velocity and human footprint, are able to accurately predict the location of continental centers of rare species diversity. However, these relationships are not geographically homogeneous, and the underlying factors likely act synergistically. Perhaps more importantly, we provide empirical evidence that current centers of rare species diversity are characterized by higher anthropogenic impacts and might shrink disproportionately within this century as the climate changes. Our reported distributional patterns of species rarity align with the known trends in species richness of other freshwater organisms and may help conservation planners make informed decisions mitigating the effects of climate change and other anthropogenic impacts on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Europa (Continente) , Água Doce , Humanos , América do Norte
4.
Proc Biol Sci ; 286(1899): 20190251, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30890096

RESUMO

Sexual conflict is thought to be an important evolutionary force in driving phenotypic diversification, population divergence, and speciation. However, empirical evidence is inconsistent with the generality that sexual conflict enhances population divergence. Here, we demonstrate an alternative evolutionary outcome in which sexual conflict plays a conservative role in maintaining male and female polymorphisms locally, rather than promoting population divergence. In diving beetles, female polymorphisms have evolved in response to male mating harassment and sexual conflict. We present the first empirical evidence that this female polymorphism is associated with (i) two distinct and sympatric male morphological mating clusters (morphs) and (ii) assortative mating between male and female morphs. Changes in mating traits in one sex led to a predictable change in the other sex which leads to predictable within-population evolutionary dynamics in male and female morph frequencies. Our results reveal that sexual conflict can lead to assortative mating between male offence and female defence traits, if a stable male and female mating polymorphisms are maintained. Stable male and female mating polymorphisms are an alternative outcome to an accelerating coevolutionary arms race driven by sexual conflict. Such stable polymorphisms challenge the common view of sexual conflict as an engine of rapid speciation via exaggerated coevolution between sexes.


Assuntos
Evolução Biológica , Variação Biológica Individual , Besouros/anatomia & histologia , Besouros/fisiologia , Características de História de Vida , Comportamento Sexual Animal , Animais , Feminino , Masculino , Suécia
5.
Ecol Evol ; 7(3): 824-830, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168019

RESUMO

Variation in the ability to fly or not is a key mechanism for differences in local species occurrences. It is increasingly acknowledged that physiological or behavioral mechanisms rather than morphological differences may drive flight abilities. However, our knowledge on the seasonal variability and stressors creating nonmorphological differences in flight abilities and how it scales to local and regional occurrences is very limited particularly for small, short-lived species such as insects. Here, we examine how flight ability might vary across seasons and between two closely related genera of freshwater beetles with similar geographical ranges, life histories, and dispersal-related morphology. By combining flight experiments of >1,100 specimens with colonization rates in a metacommunity of 54 ponds in northern and eastern Europe, we have analyzed the relationship between flight ability and spatio-environmental distribution of the study genera. We find profound differences in flight ability between the two study genera across seasons. High flight ability for Acilius (97% of the tested individuals flew during the experiments) and low for Graphoderus (14%) corresponded to the different colonization rates of newly created ponds. Within a 5-year period, 81 and 31% of the study ponds were colonized by Acilius and Graphoderus, respectively. While Acilius dispersed throughout the season, flight activity in Graphoderus was restricted to stressed situations immediately after the emergence of adults. Regional colonization ability of Acilius was independent of spatial connectivity and mass effect from propagule sources. In contrast, Graphoderus species were closely related to high connectivity between ponds in the landscape. Our data suggest that different dispersal potential can account for different local occurrences of Acilius and Graphoderus. In general, our findings provide some of the first insights into the understanding of seasonal restrictions in flight patterns of aquatic beetles and their consequences for species distributions.

6.
PLoS One ; 7(8): e41732, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952584

RESUMO

Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of marine biodiversity and resources.


Assuntos
Biodiversidade , Aves/fisiologia , DNA/metabolismo , Ecossistema , Peixes/fisiologia , Animais , Dinamarca , Meio Ambiente , Monitoramento Ambiental/métodos , Biologia Marinha , Modelos Estatísticos , Oceanos e Mares , Reação em Cadeia da Polimerase/métodos , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...