Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38400324

RESUMO

Photosensitive materials are widely used for the direct fabrication of surface relief gratings (SRGs) without the selective etching of the material. It is known that the interferometric approach makes it possible to fabricate SRGs with submicron and even subwavelength periods. However, to change the period of the written SRGs, it is necessary to change the convergence angle, shift a sample, and readjust the interferometric setup. Recently, it was shown that structured laser beams with predetermined, periodically modulated polarization distributions can also be used to fabricate SRGs. A structured laser beam with the desired polarization distribution can be formed with just one polarizing optical element-for example, the so-called depolarizer, a patterned micro-retarder array. The use of such stacked elements makes it possible to directly control the modulation period of the polarization of the generated laser beam. We show that this approach allows one to fabricate SRGs with submicron periods. Moreover, the addition of q-plates, elements effectively used to generate cylindrical vector beams with polarization singularities, allows the efficient formation of fork polarization gratings (FPGs) and the fabrication of higher-order fork-shaped SRGs. Full control of the parameters of the generated FPGs is possible. We demonstrate the formation of FPGs of higher orders (up to 12) by only adding first- and second-order q-plates and half-wave plates to the depolarizers. In this work, we numerically and experimentally study the parameters of various types of SRGs formed using these stacked polarizing elements and show the significant potential of this method for the laser processing of photosensitive materials, which often also serve as polarization sensors.

2.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770573

RESUMO

Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam. The situation is quite different with polarization-sensitive materials such as azopolymers, azobenzene-containing polymers. Azopolymers show polarization-sensitive mass transfer both at the meso and macro levels and have huge potential in diffractive optics and photonics. Previously, only one-spiral patterns formed in thin azopolymer films using circularly polarized OV beams and double-spiral patterns formed using linearly polarized OV beams have been demonstrated. In these cases, the TC of the used OV beams did not affect the number of formed spirals. In this study, we propose to use two-beam (an OV and a Gaussian beam with a spherical wavefront) interference lithography for realization spiral mass transfer with the desired number of formed spirals. The TC of the OV beam allows for controlling the number of formed spirals. We show the microstructures fabricated by the laser processing of thin azopolymer films can be used for the generation of OAM light at the microscale with the desired TC. The experimentally obtained results are in good agreement with the numerically obtained results and demonstrate the potential of the use of such techniques for the laser material processing of polarization-sensitive materials.

3.
Sensors (Basel) ; 22(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161636

RESUMO

We propose to achieve multichannel information transmission in free space by means of variously polarized beams. The interaction of vortex beams of various orders with the main polarization states is theoretically analyzed. The passage of beams with different polarization states through multi-order diffractive optical elements (DOEs) is simulated numerically. Using the simulation results, tables of code correspondence of diffraction order numbers to the presence of phase vortices in the analyzed beams are constructed, which allow one to determine diffraction orders that carry information about various polarization states. The performed experiment made it possible to study the recognition of the first order cylindrical polarization state formed by a Q-plate converter using a phase DOE. In the experiment, these elements were built into a commercial fiber-optic communication system operating at the near-IR frequencies. After detecting the beam polarization state, beams of the required diffraction orders are efficiently coupled into optical fiber using an additional phase element. The developed optical detection system also provides channel suppression of homogeneously polarized components, which are supposed to be used for transmission of other channels.

4.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616710

RESUMO

The polarization sensitivity of azopolymers is well known. Therefore, these materials are actively used in many applications of photonics. Recently, the unique possibilities of processing such materials using a structured laser beam were demonstrated, which revealed the key role of the distribution of polarization and the longitudinal component of light in determining the shape of the nano- and microstructures formed on the surfaces of thin azopolymer films. Here, we present numerical and experimental results demonstrating the high polarization sensitivity of thin azopolymer films to the local polarization state of an illuminating structured laser beam consisting of a set of light spots. To form such arrays of spots with a controlled distribution of polarization, different polarization states of laser beams, both homogeneous and locally inhomogeneous, were used. The results obtained show the possibility of implementing a parallel non-uniform patterning of thin azopolymer films depending on the polarization distribution of the illuminating laser beam. We believe that the demonstrated results will not only make it possible to implement the simultaneous detection of local polarization states of complex-shaped light fields but will also be used for the high-performance fabrication of diffractive optical elements and metasurfaces.

5.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36617009

RESUMO

In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the visible light spectrum. We also describe our training set augmentation and novel quality criteria called "false edge level" (FEL), which validates that the neural network produces visually appealing images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL) enabled us to include real scene images without a corresponding ground truth in the training process.


Assuntos
Lentes , Óptica e Fotônica , Refração Ocular , Luz , Processamento de Imagem Assistida por Computador
6.
Appl Opt ; 59(29): 9185-9194, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104630

RESUMO

The paper discusses photoinduced microrelief formation in a film of an azopolymer. A theoretical study of the effect of laser beam polarization on the balance of optical forces acting under the direct action of paraxial Gaussian beams on the irradiated substance was made. We show that taking into account the gradient and scattering components of the force does not allow us to correctly describe the shape of the microasperities obtained on a carbazole-containing azopolymer. An approximation function is presented that describes the dependence of the microasperities' shapes on the non-gradient component of the optical force of laser radiation in the absence and presence of a vortex phase. A comparative analysis of the approximation results and experimentally obtained microreliefs was carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA