Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Commun Biol ; 6(1): 18, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611093

RESUMO

Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.


Assuntos
Histonas , Consolidação da Memória , Camundongos , Animais , Histonas/genética , Histonas/metabolismo , Epigenoma , Hipocampo/metabolismo , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Expressão Gênica
2.
Curr Protoc ; 2(10): e570, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36287035

RESUMO

Epigenetic regulation of transcription is gaining increasing importance in the study of neurobiology. The advent of sequencing technology has enabled the study of this regulation across the entire genome and transcriptome. However, modern methods that allow the correlation of transcriptomic data with epigenomic regulation have had several key limitations, including use of separate tissue sources and detection of low-expression genes. This article describes a method combining isolation of nuclei tagged in specific cell types (INTACT) with translating ribosome affinity purification (TRAP) in the same cell homogenate, referred to as Simultaneous INTACT and TRAP (SIT). We used this technical approach to directly couple transcriptomic sequencing with epigenomic data in neurons derived from the mouse hippocampus. We demonstrate this method with an Emx1-NuTRAP transgenic mouse model. Here, we present protocols for SIT and for the generation and validation of the Emx1-NuTRAP mouse model that we used to demonstrate SIT. These methods enable cell type-specific comparison of translating mRNA and chromatin data from the same set of cells. Using SIT and the Emx1-NuTRAP transgenic mouse model, researchers can compare epigenomic data to transcriptomic data in the same set of hippocampal excitatory neurons. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Emx1-NuTRAP transgenic mouse line for labeling excitatory neurons in the hippocampus Basic Protocol 2: SIT: Simultaneous Isolation of nuclei tagged in specific cell types (INTACT) and Translating ribosome affinity purification (TRAP).


Assuntos
Epigênese Genética , Transcriptoma , Camundongos , Animais , Ribossomos/metabolismo , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Cromatina/metabolismo
3.
Bio Protoc ; 11(13): e4071, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34327268

RESUMO

Rodent cages equipped with access to a voluntary running wheel are commonly used to study the effects of aerobic physical activity on physiology and behavior. Notable discoveries in exercise neurobiology, including the key role of brain-derived neurotrophic factor (BDNF) in neural plasticity and cognition, have been made using rodents housed with voluntary running wheels. A major advantage of using home-cage running wheels over treadmills is the elimination of stress potentially associated with forced running. In addition, voluntary wheel running may simulate a more natural running pattern in laboratory mice. Singly housing mice with voluntary running wheels is traditionally employed to obtain exact quantitation of the distance ran; however, social isolation stress is often ignored to obtain precise running distances. Moreover, voluntary exercise studies in adolescent mice must consider the neurodevelopmental implications of isolation stress. In this protocol, we wean 21-day-old mouse pups directly into running wheel-equipped cages and pair-house them to reduce the impact of social isolation and other developmentally specific factors that could adversely affect their behavior or development. Individual running distances are obtained from each mouse in the cage using a radio-frequency identification (RFID) ear tag and a hidden antenna placed directly under the running wheel. We have demonstrated that voluntary running during a specific juvenile-adolescent developmental period can improve hippocampal memory when tested during adolescence ( Ivy et al., 2020 ). Individual exercise tracking of group-housed mice can enable future studies to precisely correlate the amount of exercise with readouts such as cell-specific gene expression, epigenetic mechanisms, serum biomarkers, and behavior, in an intra-individual manner. Graphic abstract: Figure 1.Illustration of the dual RFID and Vital View system for individual mouse running in a pair-housed cage.

4.
Semin Pediatr Neurol ; 37: 100881, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33892852

RESUMO

Since the discovery of the genetic basis of Rett syndrome in 1999, our understanding has grown considerably both in the scientific and the clinical realms. In the last two decades, we have learned about the far-reaching effects of the aberrant MeCP2 protein, the growing list of involved genetic factors, and the genotype-phenotype clinical expression of common MECP2 mutations. This knowledge has led to several basic science research and clinical trials, focusing specifically on emerging treatments of Rett syndrome. As the pathophysiology behind the disease is better understood, treatments aimed at specific molecular targets will become available for clinicians to improve the life of individuals with Rett syndrome.


Assuntos
Síndrome de Rett , Humanos , Mutação , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/terapia
5.
Sci Rep ; 10(1): 9174, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513972

RESUMO

Physical exercise is a powerful modulator of learning and memory. Mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Exercise studies targeting postnatal periods of hippocampal maturation (specifically targeting periods of synaptic reorganization and plasticity) are lacking. We characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups increased their running distances during ELE. When exposed to a subthreshold learning stimulus, juv ELE and juv-adol ELE formed lasting long-term memory for an object location memory task, whereas sedentary and adol ELE mice did not. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 in the juvenile-adolescent ELE group. I/O curves were also significantly modulated in all mice that underwent ELE. Our results suggest that early-life exercise, specifically during the 4th postnatal week, can enable hippocampal memory, synaptic plasticity, and alter hippocampal excitability when occurring during postnatal periods of hippocampal maturation.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Memória , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Modelos Animais
6.
Neuropsychopharmacology ; 45(3): 515-523, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698409

RESUMO

In humans, early-life adversity is associated with impairments in learning and memory that may emerge later in life. In rodent models, early-life adversity directly impacts hippocampal neuron structure and connectivity with progressive deficits in long-term potentiation and spatial memory function. Previous work has demonstrated that augmented release and actions of the stress-activated neuropeptide, CRH, contribute to the deleterious effects of early-life adversity on hippocampal dendritic arborization, synapse number and memory-function. Early-life adversity increases hippocampal CRH expression, and blocking hippocampal CRH receptor type-1 (CRHR1) immediately following early-life adversity prevented the consequent memory and LTP defects. Here, we tested if blocking CRHR1 in young adults ameliorates early-life adversity-provoked memory deficits later in life. A weeklong course of a CRHR1 antagonist in 2-month-old male rats prevented early-life adversity-induced deficits in object recognition memory that emerged by 12 months of age. Surprisingly, whereas the intervention did not mitigate early-life adversity-induced spatial memory losses at 4 and 8 months, it restored hippocampus-dependent location memory in 12-month-old rats that experienced early-life adversity. Neither early-life adversity nor CRHR1 blockade in the adult influenced anxiety- or depression-related behaviors. Altogether, these findings suggest that cognitive deficits attributable to adversity during early-life-sensitive periods are at least partially amenable to interventions later in life.


Assuntos
Envelhecimento/psicologia , Transtornos da Memória/prevenção & controle , Transtornos da Memória/psicologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Fatores Etários , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Injeções Intraventriculares , Masculino , Transtornos da Memória/etiologia , Gravidez , Pirimidinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/complicações
7.
Brain ; 142(3): 542-559, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668673

RESUMO

Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.


Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Fosfato de Piridoxal/uso terapêutico , Piridoxina/deficiência , Vitamina B 6/metabolismo , Deficiência de Vitamina B 6/genética , Deficiência de Vitamina B 6/metabolismo , Peixe-Zebra
8.
Am J Perinatol ; 34(5): 520-522, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27788536

RESUMO

Objective This study tested the effectiveness of a video teaching tool in improving identification and classification of encephalopathy in infants. Study Design We developed an innovative video teaching tool to help clinicians improve their skills in interpreting the neonatal neurological examination for grading encephalopathy. Pediatric residents were shown 1-minute video clips demonstrating exam findings in normal neonates and neonates with various degrees of encephalopathy. Findings from five domains were demonstrated: spontaneous activity, level of alertness, posture/tone, reflexes, and autonomic responses. After each clip, subjects were asked to identify whether the exam finding was normal or consistent with mild, moderate, or severe abnormality. Subjects were then directed to a web-based teaching toolkit, containing a compilation of videos demonstrating normal and abnormal findings on the neonatal neurological examination. Immediately after training, subjects underwent posttesting, again identifying exam findings as normal, mild, moderate, or severe abnormality. Results Residents improved in their overall ability to identify and classify neonatal encephalopathy after viewing the teaching tool. In particular, the identification of abnormal spontaneous activity, reflexes, and autonomic responses were most improved. Conclusion This pretest/posttest evaluation of an educational tool demonstrates that after viewing our toolkit, pediatric residents were able to improve their overall ability to detect neonatal encephalopathy.


Assuntos
Encefalopatias/diagnóstico , Internato e Residência , Pediatria/educação , Materiais de Ensino , Encefalopatias/classificação , Humanos , Recém-Nascido , Internet , Exame Neurológico , Gravação em Vídeo
9.
Hippocampus ; 26(12): 1618-1632, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27657911

RESUMO

Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipocampo/diagnóstico por imagem , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/diagnóstico por imagem , Animais , Estudos de Coortes , Corticosterona/sangue , Aglomeração , Imagem de Tensor de Difusão , Meio Ambiente , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Abrigo para Animais , Luz , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/sangue , Transtornos da Memória/patologia , Modelos Animais , Ruído , Tamanho do Órgão , Células Piramidais/patologia , Radioimunoensaio , Distribuição Aleatória , Ratos Sprague-Dawley , Estresse Psicológico/sangue , Estresse Psicológico/patologia
10.
J Neurosci ; 30(39): 13005-15, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20881118

RESUMO

Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF(1)) located on pyramidal cell dendrites. Additionally, chronic CRF(1) occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH expression is augmented in hippocampus of middle-aged CES rats, and then tested whether the morphological defects and poor memory performance in these animals involve excessive activation of CRF(1) receptors. Central or peripheral administration of a CRF(1) blocker following the stress period improved memory performance of CES rats in novel-object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF(1) interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF(1) occupancy post hoc normalized hippocampal function during middle age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress.


Assuntos
Transtornos Cognitivos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Doença Crônica , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/fisiopatologia
11.
Brain Res Bull ; 68(4): 257-68, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16377431

RESUMO

Previous studies have shown that running exercise, either alone or in combination with antidepressant treatment, results in increased hippocampal BDNF levels. Nitric oxide (NO) is an important signaling molecule that has neuronal survival-promoting properties and has been shown to play an important role in plasticity associated with activating interventions. Herein, we administered the NO synthase (NOS) inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in conjunction with the monoamine oxidase inhibitor (MAOI) antidepressant, tranylcypromine, and voluntary wheel-running exercise to determine whether the enhancement in full-length BDNF mRNA occurring with these interventions is dependent upon NO synthesis. Our results demonstrate that both chronic exercise and chronic exercise-plus-tranylcypromine lead to enhanced hippocampal BDNF mRNA and protein expression. NOS inhibition prevents this effect of chronic exercise, but only partly prevents the effects of the exercise/antidepressant combination. Thus, the robust enhancement in BDNF mRNA occurring with exercise appears to be NO synthesis-dependent, but the intervention including antidepressant may enhance BDNF expression through alternative intracellular mechanisms. In addition, because exercise and antidepressants have both been shown to activate survival-promoting genes, we evaluated the levels of hippocampal phosphatidylinositol 3' kinase (PI-3K), an important signaling molecule within a principal neuronal survival-promoting intracellular pathway. Like BDNF mRNA and protein, exercise increases the expression of PI-3K, whereas concomitant NOS inhibition prevents this increase in PI-3K immunoreactivity above control levels. Our results are discussed in light of possible overlapping, but distinct intracellular pathways activated by exercise and antidepressant treatment to bring about enhancements in BDNF expression and other survival-promoting effects. These findings further demonstrate the potential therapeutic potential of chronic exercise to supplement pharmacotherapeutic treatment of mood disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/fisiologia , Atividade Motora/fisiologia , Óxido Nítrico/biossíntese , Fosfatidilinositol 3-Quinases/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Inibidores da Monoaminoxidase/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Condicionamento Físico Animal , Esforço Físico , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Tranilcipromina/farmacologia
12.
Neuropsychopharmacology ; 29(12): 2189-99, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15199375

RESUMO

The antidepressants, reboxetine and citalopram, were used in conjunction with voluntary physical exercise (wheel running) in order to assess the contribution of noradrenergic and serotonergic activation to enhancements in hippocampal brain-derived neurotrophic factor (BDNF) expression resulting from antidepressant treatment and exercise. Reboxetine (40 mg/kg/day), citalopram (10 mg/kg/day), voluntary physical activity, and the combination of antidepressants with exercise were applied to rats for a range of treatment intervals (2 to 14 days). Hippocampal BDNF transcription levels (full-length BDNF, as well as exons I-IV) were then assessed via in situ hybridization. Reboxetine treatment led to a rapid (evident at 2 days) enhancement in BDNF transcription in several hippocampal regions. This increase was also observed when reboxetine treatment was combined with voluntary physical activity for 2 weeks. Treatment with citalopram led to an increase in BDNF mRNA in only one hippocampal region (CA2) after short-term (2 days) treatment, and when combined with exercise, increased BDNF mRNA in the CA4 and dentate gyrus after 2 weeks. As reported in previous studies, voluntary physical activity enhanced BDNF transcription in several hippocampal areas, both on its own and in combination with antidepressant treatments. Examination of the levels of individual BDNF transcript variants influenced by each of these antidepressants revealed distinct patterns of expression in response to the various treatments, and showed that exercise-plus-antidepressant produced significant changes where antidepressant alone failed. Overall, treatment with the norephinephrine-selective antidepressant, reboxetine, in combination with exercise, led to both rapid and sustained increases in hippocampal BDNF mRNA expression. The serotonergic agent, citalopram, appeared to require longer treatment intervals in order to influence BDNF expression positively.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citalopram/farmacologia , Hipocampo/efeitos dos fármacos , Morfolinas/farmacologia , Condicionamento Físico Animal/fisiologia , Análise de Variância , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/anatomia & histologia , Hipocampo/metabolismo , Hibridização In Situ/métodos , Masculino , Condicionamento Físico Animal/métodos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reboxetina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...