Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719746

RESUMO

Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.


Assuntos
Potássio na Dieta , Simportadores de Cloreto de Sódio , Camundongos , Animais , Pressão Sanguínea , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Tiazidas , Suplementos Nutricionais
2.
Hypertension ; 80(3): 503-522, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36448463

RESUMO

Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.


Assuntos
Hipertensão , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Humanos , Pressão Sanguínea/fisiologia , Medicina de Precisão , Hipertensão/tratamento farmacológico , Cronoterapia , Ritmo Circadiano/fisiologia , Anti-Hipertensivos/farmacologia
3.
Cardiovasc Res ; 119(8): 1740-1750, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36368681

RESUMO

AIMS: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11ß-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.


Assuntos
Glucocorticoides , Sistema Hipotálamo-Hipofisário , Humanos , Camundongos , Animais , Masculino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Cloreto de Sódio na Dieta , Sistema Hipófise-Suprarrenal/metabolismo , Camundongos Endogâmicos C57BL , Vasopressinas/genética , Vasopressinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Sci Transl Med ; 14(675): eabf5074, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516266

RESUMO

Acute kidney injury (AKI) is common and associated with increased risks of cardiovascular and chronic kidney disease. Causative molecular/physiological pathways are poorly defined. There are no therapies to improve long-term outcomes. An activated endothelin system promotes cardiovascular and kidney disease progression. We hypothesized a causal role for this in the transition of AKI to chronic disease. Plasma endothelin-1 was threefold higher; urine endothelin-1 was twofold higher; and kidney preproendothelin-1, endothelin-A, and endothelin-B receptor message up-regulated in patients with AKI. To show causality, AKI was induced in mice by prolonged ischemia with a 4-week follow-up. Ischemic injury resulted in hypertension, endothelium-dependent and endothelium-independent macrovascular and microvascular dysfunction, and an increase in circulating inflammatory Ly6Chigh monocytes. In the kidney, we observed fibrosis, microvascular rarefaction, and inflammation. Administration of endothelin-A antagonist, but not dual endothelin-A/B antagonist, normalized blood pressure, improved macrovascular and microvascular function, and prevented the transition of AKI to CKD. Endothelin-A blockade reduced circulating and renal proinflammatory Ly6Chigh monocytes and B cells, and promoted recruitment of anti-inflammatory Ly6Clow monocytes to the kidney. Blood pressure reduction alone provided no benefits; blood pressure reduction alongside blockade of the endothelin system was as effective as endothelin-A antagonism in mitigating the long-term sequelae of AKI in mice. Our studies suggest up-regulation of the endothelin system in patients with AKI and show in mice that existing drugs that block the endothelin system, particularly those coupling vascular support and anti-inflammatory action, can prevent the transition of AKI to chronic kidney and cardiovascular disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Camundongos , Animais , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Endotelina-1/uso terapêutico , Rim/metabolismo , Injúria Renal Aguda/complicações , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Progressão da Doença , Endotelinas/metabolismo , Endotelinas/farmacologia , Endotelinas/uso terapêutico , Isquemia/complicações
5.
Adv Exp Med Biol ; 1390: 109-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107315

RESUMO

Nuclear receptors play a central role in both energy metabolism and cardiomyocyte death and survival in the heart. Recent evidence suggests they may also influence cardiomyocyte endowment. Although several members of the nuclear receptor family play key roles in heart maturation (including thyroid hormone receptors) and cardiac metabolism, here, the focus will be on the corticosteroid receptors, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). The heart is an important target for the actions of corticosteroids, yet the homeostatic role of GR and MR in the healthy heart has been elusive. However, MR antagonists are important in the treatment of heart failure, a condition associated with mitochondrial dysfunction and energy failure in cardiomyocytes leading to mitochondria-initiated cardiomyocyte death (Ingwall and Weiss, Circ Res 95:135-145, 2014; Ingwall , Cardiovasc Res 81:412-419, 2009; Zhou and Tian , J Clin Invest 128:3716-3726, 2018). In contrast, animal studies suggest GR activation in cardiomyocytes has a cardioprotective role, including in heart failure.


Assuntos
Insuficiência Cardíaca , Receptores de Mineralocorticoides , Animais , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Glucocorticoides/fisiologia , Receptores dos Hormônios Tireóideos/metabolismo
7.
J Physiol ; 599(21): 4901-4924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34505639

RESUMO

The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. KEY POINTS: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids.


Assuntos
Glucocorticoides , Nascimento Prematuro , Animais , Dexametasona/farmacologia , Ácidos Graxos , Feminino , Coração Fetal , Glucocorticoides/farmacologia , Camundongos , Miócitos Cardíacos , Gravidez , Receptores de Glucocorticoides/genética , Ovinos
8.
Physiology (Bethesda) ; 36(1): 21-34, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325814

RESUMO

Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.


Assuntos
Hipertensão , Sódio , Pressão Sanguínea , Ritmo Circadiano , Humanos , Rim
9.
Hypertension ; 77(1): 158-168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190558

RESUMO

Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na+) to high salt (3% Na+) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure-depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Sistema Nervoso Simpático/fisiologia , Animais , Frequência Cardíaca/efeitos dos fármacos , Hexametônio/farmacologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Natriurese
10.
Front Physiol ; 9: 848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038578

RESUMO

Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRßgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRßgeo/+mice. Basal BP was ∼10 mmHg higher in male GRßgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRßgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRßgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRßgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRßgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.

11.
J Mol Endocrinol ; 61(1): R61-R73, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720513

RESUMO

Glucocorticoids are essential in mammals to mature fetal organs and tissues in order to survive after birth. Hence, antenatal glucocorticoid treatment (termed antenatal corticosteroid therapy) can be life-saving in preterm babies and is commonly used in women at risk of preterm birth. While the effects of glucocorticoids on lung maturation have been well described, the effects on the fetal heart remain less clear. Experiments in mice have shown that endogenous glucocorticoid action is required to mature the fetal heart. However, whether the potent synthetic glucocorticoids used in antenatal corticosteroid therapy have similar maturational effects on the fetal heart is less clear. Moreover, antenatal corticosteroid therapy may increase the risk of cardiovascular disease in adulthood. Here, we present a narrative review of the evidence relating to the effects of antenatal glucocorticoid action on the fetal heart and discuss the implications for antenatal corticosteroid therapy.


Assuntos
Corticosteroides/metabolismo , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Desenvolvimento Fetal/fisiologia , Coração Fetal/metabolismo , Coração Fetal/fisiologia , Humanos , Nascimento Prematuro
12.
Kidney Int Rep ; 1(3): 197-203, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27722209

RESUMO

Hypertension is known as the "silent killer," driving the global public health burden of cardiovascular and renal disease. Blood pressure homeostasis is intimately associated with sodium balance and the distribution of sodium between fluid compartments and within tissues. On a population level, most societies consume 10 times more salt that the 0.5 g required by physiological need. This high salt intake is strongly linked to hypertension and to the World Health Organization targeting a ∼30% relative reduction in mean population salt intake to arrest the global mortality due to cardiovascular disease. But how does a habitually high-salt diet cause blood pressure to rise? In this focused review, we discuss 2 "evolutionary medicine" concepts, presented at the ISN Forefront Meeting "Immunomodulation of Cardio-renal Function." We first examine how ancestral variants in genes that conferred a selection advantage during early human development are now maladaptive. We then discuss the conservation of "renal" sodium transport processes across multiple organ systems, including the brain. These systems influence sodium appetite and can exert an often-overlooked effect on long-term blood pressure control.

13.
J Am Soc Nephrol ; 27(11): 3345-3355, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27020854

RESUMO

Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.


Assuntos
Vesículas Extracelulares/fisiologia , Túbulos Renais Coletores/citologia , Vasopressinas/fisiologia , Adolescente , Animais , Desamino Arginina Vasopressina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Túbulos Renais Coletores/ultraestrutura , Masculino , Camundongos , Ratos
14.
Hypertension ; 67(5): 1029-37, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26953322

RESUMO

Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic-pituitary-adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine(53) (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Corticosterona/farmacologia , Hidroclorotiazida/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial , Modelos Animais de Doenças , Feminino , Immunoblotting , Infusões Intravenosas , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase/métodos , Distribuição Aleatória , Sensibilidade e Especificidade , Membro 3 da Família 12 de Carreador de Soluto/genética , Simportadores/metabolismo
15.
Circulation ; 133(14): 1360-70, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26951843

RESUMO

BACKGROUND: The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11ßHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11ßHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. METHODS AND RESULTS: Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. CONCLUSIONS: Reduced 11ßHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11ßHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor-dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Fissura/fisiologia , Hipertensão/genética , Síndrome de Excesso Aparente de Minerolocorticoides/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Receptores de Mineralocorticoides/fisiologia , Cloreto de Sódio na Dieta/toxicidade , Núcleo Solitário/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/fisiologia , Animais , Barorreflexo/efeitos dos fármacos , Corticosterona/sangue , Dexametasona/farmacologia , Comportamento de Ingestão de Líquido , Genes Sintéticos , Hipertensão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Excesso Aparente de Minerolocorticoides/tratamento farmacológico , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Néfrons/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nestina/genética , Neurônios/fisiologia , Potássio/urina , RNA Mensageiro/biossíntese , Reflexo Anormal , Núcleo Solitário/fisiopatologia , Espironolactona/farmacologia
16.
PLoS One ; 10(8): e0134620, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26301956

RESUMO

Insect nephrocytes are highly endocytic scavenger cells that represent the only invertebrate model for the study of human kidney podocytes. Despite their importance, nephrocyte development is largely uncharacterised. This work tested whether the insect ortholog of mammalian Kidney Krüppel-Like Factor (Klf15), a transcription factor required for mammalian podocyte differentiation, was required for insect nephrocyte development. It was found that expression of Drosophila Klf15 (dKlf15, previously known as Bteb2) was restricted to the only two nephrocyte populations in Drosophila, the garland cells and pericardial nephrocytes. Loss of dKlf15 function led to attrition of both nephrocyte populations and sensitised larvae to the xenotoxin silver nitrate. Although pericardial nephrocytes in dKlf15 loss of function mutants were specified during embryogenesis, they failed to express the slit diaphragm gene sticks and stones and did not form slit diaphragms. Conditional silencing of dKlf15 in adults led to reduced surface expression of the endocytic receptor Amnionless and loss of in vivo scavenger function. Over-expression of dKlf15 increased nephrocyte numbers and rescued age-dependent decline in nephrocyte function. The data place dKlf15 upstream of sns and Amnionless in a nephrocyte-restricted differentiation pathway and suggest dKlf15 expression is both necessary and sufficient to sustain nephrocyte differentiation. These findings explain the physiological relevance of dKlf15 in Drosophila and imply that the role of KLF15 in human podocytes is evolutionarily conserved.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/fisiologia , Drosophila melanogaster/citologia
17.
Br J Pharmacol ; 172(11): 2827-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25598351

RESUMO

BACKGROUND AND PURPOSE: Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA / B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. EXPERIMENTAL APPROACH: Antagonism of ETA receptors by sitaxentan (1-100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg(-1) ·day(-1) ), A192621 (ETB antagonist; 30 mg·kg(-1) ·day(-1) ), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. KEY RESULTS: Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA / B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. CONCLUSIONS AND IMPLICATIONS: These results suggest that ETA receptor antagonism would be more effective than combined ETA /ETB receptor antagonism at reducing neointimal lesion formation.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Artéria Femoral/efeitos dos fármacos , Isoxazóis/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/patologia , Pirrolidinas/farmacologia , Tiofenos/farmacologia , Animais , Modelos Animais de Doenças , Artéria Femoral/lesões , Artéria Femoral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miografia
18.
J Am Soc Nephrol ; 26(7): 1537-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349206

RESUMO

Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11ßHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Túbulos Renais Distais/patologia , Fosforilação/efeitos dos fármacos , Simportadores de Cloreto de Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Análise de Variância , Animais , Células Cultivadas , DNA Complementar/análise , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Hipertrofia/patologia , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase/métodos , RNA/análise , Distribuição Aleatória , Transcitose/fisiologia
19.
J Physiol ; 592(18): 3955-67, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107929

RESUMO

The regulation of extracellular fluid volume by renal sodium excretion lies at the centre of blood pressure homeostasis. Renal perfusion pressure can directly regulate sodium reabsorption in the proximal tubule. This acute pressure natriuresis response is a uniquely powerful means of stabilizing long-term blood pressure around a set point. By logical extension, deviation from the set point can only be sustained if the pressure natriuresis mechanism is impaired, suggesting that hypertension is caused or sustained by a defect in the relationship between renal perfusion pressure and sodium excretion. Here we describe the role of pressure natriuresis in blood pressure control and outline the cascade of biophysical and paracrine events in the renal medulla that integrate the vascular and tubular response to altered perfusion pressure. Pressure natriuresis is impaired in hypertension and mechanistic insight into dysfunction comes from genetic analysis of blood pressure disorders. Transplantation studies in rats show that blood pressure is determined by the genotype of the kidney and Mendelian hypertension indicates that the distal nephron influences the overall natriuretic efficiency. These approaches and the outcomes of genome-wide-association studies broaden our view of blood pressure control, suggesting that renal sympathetic nerve activity and local inflammation can impair pressure natriuresis to cause hypertension. Understanding how these systems interact is necessary to tackle the global burden of hypertension.


Assuntos
Pressão Sanguínea , Hipertensão/fisiopatologia , Rim/fisiologia , Natriurese , Animais , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Rim/inervação , Rim/metabolismo , Sistema Nervoso Simpático/fisiologia
20.
J Physiol ; 592(8): 1731-44, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24535442

RESUMO

The clinical manifestations of glucocorticoid excess include central obesity, hyperglycaemia, dyslipidaemia, electrolyte abnormalities and hypertension. A century on from Cushing's original case study, these cardinal features are prevalent in industrialized nations. Hypertension is the major modifiable risk factor for cardiovascular and renal disease and reflects underlying abnormalities of Na(+) homeostasis. Aldosterone is a master regulator of renal Na(+) transport but here we argue that glucocorticoids are also influential, particularly during moderate excess. The hypothalamic-pituitary-adrenal axis can affect renal Na(+) homeostasis on multiple levels, systemically by increasing mineralocorticoid synthesis and locally by actions on both the mineralocorticoid and glucocorticoid receptors, both of which are expressed in the kidney. The kidney also expresses both of the 11ß-hydroxysteroid dehydrogenase (11ßHSD) enzymes. The intrarenal generation of active glucocorticoid by 11ßHSD1 stimulates Na(+) reabsorption; failure to downregulate the enzyme during adaption to high dietary salt causes salt-sensitive hypertension. The deactivation of glucocorticoid by 11ßHSD2 underpins the regulatory dominance for Na(+) transport of mineralocorticoids and defines the 'aldosterone-sensitive distal nephron'. In summary, glucocorticoids can stimulate renal transport processes conventionally attributed to the renin-angiotensin-aldosterone system. Importantly, Na(+) and volume homeostasis do not exert negative feedback on the hypothalamic-pituitary-adrenal axis. These actions are therefore clinically relevant and may contribute to the pathogenesis of hypertension in conditions associated with elevated glucocorticoid levels, such as the metabolic syndrome and chronic stress.


Assuntos
Glucocorticoides/metabolismo , Hipertensão/metabolismo , Rim/fisiologia , Sódio/metabolismo , Animais , Humanos , Transporte de Íons , Rim/metabolismo , Sistema Renina-Angiotensina , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...