Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(27): 275312, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21613737

RESUMO

Novel assemblies of DNA-functionalized gold nanoparticles (DNA-GNPs) have received considerable interest due to their fascinating properties which are desired for various detection applications. In this study, we present innovative GNP assemblies which have a cage-shaped protein ferritin in the center, and discrete GNPs sterically surrounding the central ferritin. These assemblies were constructed by hybridizing DNA-GNP to chemically DNA-modified ferritin, which has a hollow cavity or an iron NP core. Subsequent gel electrophoresis purification and transmission electron microscopy observation showed that ferritin/DNA/GNP assemblies were successfully constructed and can be isolated as independent functional units, which can be used to investigate not only the interaction between the GNPs of complicated GNP clusters but also the interaction between the GNPs and the internalized NP.


Assuntos
DNA/química , Ferritinas/química , Ouro/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico/métodos , Animais , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Cavalos , Ferro/química , Nanopartículas Metálicas/ultraestrutura , Propriedades de Superfície
2.
Nanotechnology ; 21(4): 045305, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20009209

RESUMO

Newly designed porter proteins, which catch gold nanoparticles and deliver the nanoparticles selectively to a silicon dioxide (SiO(2)) surface under the specific conditions were reported. Recombinant apoferritin subunits, each of which has gold-binding peptide and titanium-binding peptide at the C- and N-terminus, respectively, can efficiently encapsulate a gold nanoparticle. The bio-conjugate, a nanogold and surrounding mutant protein subunits, had a property which can deliver itself to the SiO(2) surface through the interaction. In theory, our genetically manipulated apoferritin subunits can encapsulate gold nanoparticles of various sizes, which is a promising property for applications involving surface plasmon resonance.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ferritinas/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/química , Proteínas Recombinantes/metabolismo , Adsorção , Ferritinas/química , Ferritinas/genética , Ouro/química , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Mutação , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície
3.
Nanotechnology ; 19(49): 495601, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21730676

RESUMO

A simple size-controlled synthesis of cadmium sulfide (CdS) nanoparticle (NP) cores in the cavity of apoferritin from horse spleen (HsAFr) was performed by a slow chemical reaction synthesis and a two-step synthesis protocol. We found that the CdS NP core synthesis was slow and that premature CdS NP cores were formed in the apoferritin cavity when the concentration of ammonia water was low. It was proven that the control of the ammonia water concentration can govern the CdS NP core synthesis and successfully produce size-controlled CdS NP cores with diameters from 4.7 to 7.1 nm with narrow size dispersion. X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy (HR-TEM) observation characterized the CdS NP cores obtained as cubic polycrystalline NPs, which showed photoluminescence with red shifts depending on their diameters. From the research of CdS NP core synthesis in the recombinant apoferritins, the zeta potential of apoferritin is important for the biomineralization of CdS NP cores in the apoferritin cavity. These synthesized CdS NPs with different photoluminescence properties will be applicable in a wide variety of nano-applications.

4.
J Microbiol Methods ; 51(2): 141-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12133606

RESUMO

Mycolic acid-containing bacteria (mycolata) are thought to be involved in scum formation in aeration basins of activated sludge plants due to their ability to produce biosurfactants and their cell surface hydrophobicity. To isolate these bacteria, immunomagnetic separation (IMS) using an anti-mycolic acid polyclonal antibody was investigated. IMS that targeted Gordonia amarae SC1 exhibited a 100% recovery at 5x10(3) CFU ml(-1). At cell concentration of 7.8x10(6) CFU ml(-1), the recovery was lowered, but 80% of cells were still captured. Effect of bead concentrations on the recovery of SC1 at 10(6) CFU ml(-1) was examined. The results showed that addition of more than 6-7x10(6) beads for 1x10(6) CFU reached a maximum recovery (83%). Furthermore, the IMS procedure optimized with SC1 cells was tested with another mycolata. The results suggested that variation of the recovery for each mycolata is dependent on the specificity of the polyclonal antibody and that mycolata which are recognized by the antibody can be recovered by this procedure.


Assuntos
Bactérias/isolamento & purificação , Separação Imunomagnética/métodos , Ácidos Micólicos/análise , Esgotos/microbiologia , Animais , Soros Imunes/imunologia , Ácidos Micólicos/imunologia , Coelhos
5.
Biosci Biotechnol Biochem ; 65(9): 1981-6, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11676009

RESUMO

Volatilization of mercury under acidic conditions from soil polluted with mercuric chloride (1.5 mg Hg/kg soil) was studied with resting cells of a mercury-resistant strain, Acidithiobacillus ferrooxidans SUG 2-2. When resting cells of SUG 2-2 (0.01 mg of protein) were incubated for 10 d at 30 degrees C in 20 ml of 1.6 mM sulfuric acid (pH 2.5) with ferrous sulfate (3%) and mercury-polluted soil (1 g), which contained 7.5 nmol of Hg, approximately 4.1 nmol of mercury was volatilized, indicating that 54% of the total mercury in the soil was volatilized. The amount of mercury volatilized from the soil was dependent on the concentration of Fe2+ added to the medium. When elemental sulfur, sodium tetrathionate, and pyrite were used as an electron donor for the mercury reduction, 16, 2.4 and 0.84%, respectively, of the total mercury added to the solution were volatilized. The optimum pH and temperature for mercury volatilization were 2.5 and 30 degrees C. Approximately 92% of the total mercury in a salt solution (pH 2.5) with resting cells of SUG 2-2 (0.01 mg of protein), ferrous sulfate (3%) and mercury-polluted soil (1 g) was volatilized by further addition of both resting cells and Fe2+ and by incubating for 30 d at 30 degrees C.


Assuntos
Mercúrio/química , Proteobactérias/fisiologia , Poluentes do Solo/metabolismo , Volatilização , Concentração de Íons de Hidrogênio , Ferro/química , Ferro/metabolismo , Mercúrio/metabolismo , Microbiologia do Solo , Temperatura
6.
J Biosci Bioeng ; 92(1): 44-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-16233056

RESUMO

We suggested in our previous study that the plasma membrane cytochrome c oxidase of the mercury-resistant iron-oxidizing bacterial strain Acidithiobacillus ferrooxidans, SUG 202, is involved in Fe2+-dependent mercury volatilization. To study the involvement of A. ferrooxidans cytochrome c oxidase in mercury reduction, the cytochrome c oxidase was extracted from mercury-resistant and mercury-sensitive strains and purified. The Fe2+-dependent mercury volatilization activities of the oxidases from these strains were compared. The cytochrome c oxidase from strain SUG 2-2 volatilized 39% of the total Hg2+ (7 nmol) that had been added to a 10-ml reaction mixture (pH 3.8) in the presence of 10 micromol of Fe2+ after a 7-d incubation period at 30 degrees C. In contrast, the enzyme purified from the mercury-sensitive strain AP19-3 volatilized 3.5% of the total mercury under the same conditions. The boiled SUG 2-2 oxidase did not exhibit activity to volatilize mercury. Fe2+ reduced the oxidase from SUG 2-2 and Hg2+ oxidized the reduced enzyme. The purified SUG 2-2 oxidase is composed of three protein subunits with apparent molecular weights of 56,000 Da (alpha), 24,000 Da (beta), and 19,000 Da (gamma). The amount of mercury bound to the purified SUG 2-2 oxidase was 6.2 microg/mg protein and those bound to alpha-, beta- and gamma-subunits of the cytochrome c oxidase were 3.5, 2.6 and 0.7 microg/mg protein, respectively.

7.
J Biosci Bioeng ; 92(1): 77-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-16233062

RESUMO

Gordonia amarae is the cause of foaming activated sludge. In this study, the mechanism of foam formation by G. amarae SC1 was investigated. A liquid culture of SC1 cells generated a stable foam when shaken reciprocally. This foam formation was dependent on the presence of both bacterial cells and culture supernatant. A high-molecular-weight fraction (Mw>10000) of the supernatant was capable of emulsifying n-hexadecane in addition to exhibiting foaming activity, indicating that it contains a surface-active substance(s). The bacterial cells showed a high affinity to hexadecane. This hydrophobic cell surface property might be involved in the attachment of cells to air bubbles to generate a stable foam. The results demonstrated the participation of cells and the extracellular biosurfactant in the formation and stabilization of foam in G. amarae SC1 culture.

8.
J Biosci Bioeng ; 92(5): 417-22, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-16233121

RESUMO

Mycolic acid-containing actinomycetes (mycolata) are considered the causative agents of foaming of activated sludge and scum formation in activated sludge treatment plants. In this study, the production of anti-Gordonia amarae mycolic acid polyclonal antibodies was investigated. Rabbits were immunized with a conjugate of keyhole limpet hemocyanin and mycolic acids of G. amarae, which contained 48 to 56 carbon atoms (average, 52.0). Enzyme-linked immunosorbent assay (ELISA) demonstrated that the polyclonal antibodies could recognize cells of G. amarae ranging from 0.1 to 10 microg. The antibodies also reacted with other tested mycolata strains belonging to the genera Nocardia, Rhodococcus, Dietzia, Mycobacterium and Tsukamurella. However, reactivities against other gram-positive and gram-negative bacteria not containing mycolic acid were negligible or much lower. The results indicate that the anti-G. amarae mycolic acid antibodies show a reactivity selective for a group of mycolata involved in the foaming of activated sludge.

9.
Immunity ; 13(5): 621-31, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11114375

RESUMO

We have identified the lymphocyte semaphorin CD100/Sema4D as a CD40-inducible molecule by subtractive cDNA cloning. CD100 stimulation significantly enhanced the effects of CD40 on B cell responses. Administration of soluble CD100 markedly accelerated in vivo antigen-specific antibody responses. CD100 receptors with different binding affinities were detected on renal tubular cells (K(d) = approximately 1 x 10(-9)M) and lymphocytes (K(d) = approximately 3 x 10(-7)M). Expression cloning revealed that the CD100 receptor on lymphocytes is CD72, a negative regulator of B cell responsiveness. CD72 thus represents a novel class of semaphorin receptors. CD100 stimulation induced tyrosine dephosphorylation of CD72 and dissociation of SHP-1 from CD72. Our findings indicate that CD100 plays a critical role in immune responses by the novel mechanism of turning off negative signaling by CD72.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Linfócitos B/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Semaforinas , Transdução de Sinais/imunologia , Animais , Células CHO , Cricetinae
10.
Appl Environ Microbiol ; 66(9): 3823-7, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10966396

RESUMO

Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Compostos Ferrosos/metabolismo , Mercúrio/metabolismo , Thiobacillus/metabolismo , Azurina/análogos & derivados , Azurina/farmacologia , Meios de Cultura , Resistência Microbiana a Medicamentos , Mercúrio/farmacologia , Cianeto de Sódio/farmacologia , Thiobacillus/efeitos dos fármacos , Thiobacillus/crescimento & desenvolvimento , Volatilização
11.
J Biosci Bioeng ; 89(2): 145-50, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-16232717

RESUMO

A white rot fungus, Coriolus hirsutus, exhibited a strong ability to decolorize melanoidin in cultures not supplemented with nitrogenous nutrients. Addition of peptone to the cultures lowered the ability of the fungus to decolorize melanoidin, but that of inorganic nitrogens (Ns), ammonium and nitrate did not bring about any marked reduction in the ability. These results suggest an inhibitory effect of organic N on melanoidin decolorization. Therefore, for enhancing the decolorization of melanoidin in wastewaters by the fungus, activated sludge pretreatment of the wastewaters was expected to be effective, i.e., activated sludge is capable of converting available organic N into inorganic N. To confirm this, waste sludge heat treatment liquor (HTL), wastewater from a sewage treatment plant, was pretreated with activated sludge. In practice, pretreatment of HTL under appropriate conditions accelerated the fungal decolorization of HTL. In the pretreated HTL, the fungus was shown to produce a high level of manganese-independent peroxidase (MIP). Addition of Mn(II) to the pretreated HTL caused a further increase in the decolorization efficiency of the fungus and a marked increase in the manganese peroxidase (MnP) activity. Consequently, the increases in MIP and MnP activities were considered to play an important role in the enhanced ability of C. hirsutus to decolorize HTL.

12.
J Biosci Bioeng ; 89(5): 469-73, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-16232779

RESUMO

Nocardia amarae, a mycolic acid-containing bacterium, has often been reported to cause foaming of activated sludge in wastewater treatment plants. In this study, the number of N. amarae cells in the activated sludge process was estimated by enzyme-linked immunosorbent assay (ELISA) with anti-N. amarae polyclonal antibody. Use of the antibody enabled N. amarae to be detected at levels of 10(4) to 10(7) colony forming units. On the other hand, the antibody reacted with only a small portion of activated sludge, in which no N. amarae cells were detected by the plate count method. Competitive ELISA was employed to estimate the N. amarae cells in samples taken from a municipal wastewater treatment plant, including raw wastewater and activated sludge foam. The cell numbers estimated by competitive ELISA corresponded well with those obtained by plate counts. Hence, the antibody produced in this study was shown to be effective for the rapid monitoring of N. amarae in the activated sludge process.

13.
J Biosci Bioeng ; 88(4): 387-92, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-16232633

RESUMO

Fifty iron-oxidizing bacteria isolated from natural environments were screened for resistance to mercuric ions (Hg2+). Thiobacillus ferrooxidans Funis 2-1, the strain found to show the greatest resistance to Hg2+ among the fifty isolates, gave a cell yield of 7.0 x 10(7) cells/ml after 8 d cultivation in an Fe2+-medium (pH 2.5) containing 0.7 microM Hg2+. Funis 2-1 volatilized 80% of the total mercury added to the medium over 8 d of cultivation. T. ferrooxidans AP19-3, more sensitive to Hg2+ than Funis 2-1, could not grow in an Fe2+-medium (pH 2.5) containing 0.7 microM Hg2+ even over a 28 d cultivation period. When resting cells of strains Funis 2-1 and AP19-3 were incubated for 3 h in a salt solution containing 0.7 microM Hg2+ (pH 3.0), 14.3% and 7.9% of the total mercury added to the reaction mixtures respectively, were volatilized. The activity of the mercuric reductase from Funis 2-1 was only 2.8 times higher than that of the enzyme from AP19-3. Since the markedly higher mercury resistance of Funis 2-1 compared with that of AP19-3 cannot be explained only by the level of the mercuric reductase activity, the levels of mercury resistance of iron oxidase and cytochrome c oxidase were studied. The 1 microM mercuric ions inhibited the 35% of iron-oxidizing activity from AP19-3. In contrast, the same concentration of Hg2+ did not inhibit the activity of iron oxidase from Funis 2-1. In the case of the cytochrome c oxidases purified from both strains, the 0.2 microM Hg2+ inhibited approximately 40% of cytochrome c oxidizing activity from AP19-3, on the contrary, the activity of the enzyme from Funis 2-1 was activated 1.8- and 1.2-fold, respectively, in the presence of 0.08 and 0.2 microM Hg2+. Since cytochrome c oxidase is one of the most important components of the iron-oxidizing system, these results indicate that both the existence of cytochrome c oxidase resistant to Hg2+ as well as that of mercuric reductase in the cells is responsible for the more rapid growth of Funis 2-1 than that of in an Fe2+-medium containing 0.7 microM Hg2+.

14.
Biosci Biotechnol Biochem ; 62(6): 1081-6, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9692188

RESUMO

Sulfite ion (HSO3-) is one of the products when elemental sulfur is oxidized by the hydrogen sulfide:ferric ion oxidoreductase of Thiobacillus ferrooxidans AP19-3. Under the conditions in which HSO3- is accumulated in the cells, the iron oxidase of this bacterium was strongly inhibited by HSO3-. Since cytochrome c oxidase is one of the most important components of the iron oxidase enzyme system in T. ferrooxidans, effects of HSO3- on cytochrome c oxidase activity were studied with the plasma membranes of HSO3(-)-resistant and -sensitive strains of T. ferrooxidans, OK1-50 and AP19-3. The enzyme activity of AP19-3 compared with OK1-50 was strongly inhibited by HSO3-. To investigate the inhibition mechanism of HSO3- in T. ferrooxidans, cytochrome c oxidases were purified from both strains to an electrophoretically homogeneous state. Cytochrome c oxidase activity of a purified OK1-50 enzyme was not inhibited by 5 mM HSO3-. In contrast, the same concentration of HSO3- inhibited the enzyme activity of AP19-3 50%, indicating that the cytochrome c oxidase of OK1-50 was more resistant to HSO3- than that of AP19-3. Cytochrome c oxidases purified from both strains were composed of three subunits. However, the molecular weight of the largest subunit differed between OK1-50 and AP19-3. Apparent molecular weights of the three subunits of cytochrome c oxidases were 53,000, 24,000, and 19,000 for strain AP19-3 and 55,000, 24,000, and 19,000 for strain OK1-50, respectively.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Sulfitos/farmacologia , Thiobacillus/enzimologia , Resistência Microbiana a Medicamentos , Peso Molecular , Fragmentos de Peptídeos/química , Especificidade da Espécie , Espectrofotometria
15.
Appl Environ Microbiol ; 60(2): 722-5, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16349199

RESUMO

When grown on iron-salt medium supplemented with the bisulfite ion, Leptospirillum ferrooxidans was much more sensitive to the ion than was Thiobacillus ferrooxidans. The causes of the sensitivity of L. ferrooxidans to the bisulfite ion were studied. The bisulfite ion completely inhibited the iron-oxidizing activities of L. ferrooxidans and T. ferrooxidans at 0.02 and 0.2 mM, respectively. A trapping reagent for the bisulfite ion, formaldehyde, completely reversed the inhibition. The treatment of intact cells with 1.0 mM bisulfite ion for 1 h and washing the bisulfite ion from the cells had no harmful effects on the iron-oxidizing activity of T. ferrooxidans. However, the treatment of L. ferrooxidans with 0.1 mM bisulfite ion for 1 h completely destroyed the iron-oxidizing activity. T. ferrooxidans had sulfite:ferric ion oxidoreductase activity. In contrast, a quite low level of sulfite:ferric ion oxidoreductase activity was found in L. ferrooxidans, suggesting that it is much more difficult for L. ferrooxidans to oxidize the bisulfite ion to the less harmful sulfate than it is for T. ferrooxidans. These results suggest that the sensitivity of L. ferrooxidans to the bisulfite ion is due to a lack of an active sulfite:ferric ion oxidoreductase and the sensitivity of its iron oxidase to bisulfite ion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...