Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Surg Case Rep ; 10(1): 90, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635121

RESUMO

BACKGROUND: Portal vein thrombosis (PVT) and venous thromboembolism (VTE) both result from partial or complete occlusion of a blood vessel by a blood clot. The prognosis of PVT is generally good; however, PVT with VTE, including pulmonary embolism (PE), has a high mortality rate. We report here a case of PE after surgery for small intestinal necrosis caused by idiopathic PVT. CASE PRESENTATION: A 69-year-old female attended our hospital with a chief complaint of upper abdominal discomfort, and was diagnosed with necrosis of the small intestine as a result of unexplained PVT. She underwent partial resection of the small intestine. On the second postoperative day, she suffered from respiratory distress and went into cardiopulmonary arrest. The patient recovered following cardiopulmonary resuscitation, but PE was detected. Extracorporeal veno-arterial cardiopulmonary resuscitation and anticoagulation therapy were initiated immediately and the thrombus was aspirated as much as possible. Two days later, extracorporeal veno-arterial cardiopulmonary resuscitation was withdrawn and anticoagulation therapy was continued. The patient subsequently recovered with no neurological damage and was discharged on day 26 after the above procedure. CONCLUSIONS: Idiopathic PVT is often associated with VTE, and a prompt diagnosis and intervention may result in a good prognosis.

2.
J Atheroscler Thromb ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538338

RESUMO

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

3.
Surg Today ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055105

RESUMO

Some patients with refractory esophagogastric varices require surgery, such as gastric devascularization and splenectomy (Hassab's procedure). However, these patients are at risk of perioperative morbidities when undergoing devascularization to develop collateral vessels. We performed a more simplified procedure, splenectomy, and en bloc gastropancreatic fold division (GPFD) with hand-assisted laparoscopic surgery. Four patients with refractory esophagogastric varices and portal hypertension underwent splenectomy and GPFD. We reviewed patients' perioperative laboratory and morphological data, operative variables, and postoperative outcomes. Esophagogastric varices improved in 3 (75%) of the 4 patients. In one patient, esophageal varices (F1RC0) were observed 3 years after surgery, but they required no treatment and only received follow-up. Treatment with splenectomy and GPFD is not only less invasive than Hassab's procedure but also provides effective outcomes for refractory esophagogastric varices.

4.
Cell Rep ; 42(8): 112914, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37557182

RESUMO

The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of ß cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured ß cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic ß cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of ß cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Obesidade , Animais , Humanos , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo
5.
J Biol Chem ; 299(7): 104890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286039

RESUMO

Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional corepressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1. In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2-PPARα complex. Consistent with these in vitro findings, we found that the CtBP2-PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.


Assuntos
Oxirredutases do Álcool , Proteínas Correpressoras , Obesidade , PPAR alfa , Humanos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Regulação Alostérica
6.
Sci Rep ; 13(1): 4299, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922617

RESUMO

Although glucose metabolism and atrial fibrillation (AF) have complex interrelationships, the impact of catheter ablation of AF on glucose status has not been well evaluated. Continuous glucose monitoring (CGM) with a FreeStyle Libre Pro (Abbott) was performed for 48 h pre-procedure, during the procedure, and for 72 h post-procedure in 58 non-diabetes mellitus (DM) patients with symptomatic AF and 20 patients with supraventricular or ventricular arrhythmias as a control group. All ablation procedures including pulmonary vein isolation were performed successfully. Glucose levels during procedures consistently increased in the AF and control groups (83.1 ± 16.1 to 110.0 ± 20.5 mg/dL and 83.3 ± 14.7 to 98.6 ± 16.3 mg/dL, respectively, P < 0.001 for both), and Δ glucose levels (max minus min/procedure) were greater in the AF group than control group (P < 0.001). There was a trend toward higher mean glucose levels at 72 h after the procedures compared with those before the procedures in both the AF and control groups (from 103.4 ± 15.6 to 106.1 ± 13.0 mg/dL, P = 0.063 and from 100.2 ± 17.1 to 102.9 ± 16.9 mg/dL, P = 0.052). An acute increase in glucose level at the time of early AF recurrence (N = 9, 15.5%) could be detected by simultaneous CGM and ECG monitoring (89.7 ± 18.0 to 108.3 ± 30.5 mg/dL, P = 0.001). In conclusion, although AF ablation caused a statistically significant increase in the glucose levels during the procedures, it did not result in a pathologically significant change after ablation in non-DM patients. Simultaneous post-procedure CGM and ECG monitoring alerted us to possible acute increases in glucose levels at the onset of AF recurrence.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/cirurgia , Automonitorização da Glicemia , Resultado do Tratamento , Glicemia , Ablação por Cateter/métodos , Recidiva
7.
Artigo em Inglês | MEDLINE | ID: mdl-36571472

RESUMO

Summary: In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points: While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.

8.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502082

RESUMO

The combination of magnetoresistive (MR) element and magnetic flux concentrators (MFCs) offers highly sensitive magnetic field sensors. To maximize the effect of MFC, the geometrical design between the MR element and MFCs is critical. In this paper, we present simulation and experimental studies on the effect of the geometrical relationship between current-in-plane giant magnetoresistive (GMR) element and MFCs made of a NiFeCuMo film. Finite element method (FEM) simulations showed that although an overlap between the MFCs and GMR element enhances their magneto-static coupling, it can lead to a loss of magnetoresistance ratio due to a magnetic shielding effect by the MFCs. Therefore, we propose a comb-shaped GMR element with alternate notches and fins. The FEM simulations showed that the fins of the comb-shaped GMR element provide a strong magneto-static coupling with the MFCs, whereas the electric current is confined within the main body of the comb-shaped GMR element, resulting in improved sensitivity. We experimentally demonstrated a higher sensitivity of the comb-shaped GMR sensor (36.5 %/mT) than that of a conventional rectangular GMR sensor (28 %/mT).


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Magnetismo , Campos Magnéticos
9.
Cureus ; 14(10): e30067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381756

RESUMO

A 19-year-old male presented with fatigue and dyspnea on exertion. He was diagnosed with acute T-cell lymphoblastic leukemia. After following the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) 2003 protocol that incorporates L-asparaginase (L-Asp) treatment, blood glucose levels became elevated for more than one year and insulin secretion was depleted. Anti-glutamic acid decarboxylase (GAD) and anti-islet antigen 2 (IA-2) antibody levels were both positive, which is rare. The patient's HLA genotype was sensitive for type 1 diabetes. L-Asp can cause transient hyperglycemia as a side effect. However, cases with the anti-GAD antibody have not been reported in L-Asp-induced diabetes. In summary, L-Asp-induced continuous hyperglycemia might be associated with a type 1 diabetes-related HLA genotype through elevations of anti-GAD and anti-IA-2 antibodies.

10.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235570

RESUMO

Although branched-chain amino acids (BCAA) are known to stimulate myofibrillar protein synthesis and affect insulin signaling and kynurenine metabolism (the latter being a metabolite of tryptophan associated with depression and dementia), the effects of BCAA supplementation on type 2 diabetes (T2D) are not clear. Therefore, a 24-week, prospective randomized open blinded-endpoint trial was conducted to evaluate the effects of supplementation of 8 g of BCAA or 7.5 g of soy protein on skeletal muscle and glycemic control as well as adverse events in elderly individuals with T2D. Thirty-six participants were randomly assigned to the BCAA group (n = 21) and the soy protein group (n = 15). Skeletal muscle mass and HbA1c, which were primary endpoints, did not change over time or differ between groups. However, knee extension muscle strength was significantly increased in the soy protein group and showed a tendency to increase in the BCAA group. Homeostasis model assessment for insulin resistance did not significantly change during the trial. Depressive symptoms were significantly improved in the BCAA group but the difference between groups was not significant. Results suggested that BCAA supplementation may not affect skeletal muscle mass and glycemic control and may improve depressive symptoms in elderly individuals with T2D.


Assuntos
Aminoácidos de Cadeia Ramificada , Diabetes Mellitus Tipo 2 , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas/metabolismo , Controle Glicêmico , Humanos , Insulina/metabolismo , Cinurenina/metabolismo , Músculo Esquelético/metabolismo , Estudos Prospectivos , Proteínas de Soja/metabolismo , Triptofano/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-35979842

RESUMO

Summary: A paired homeodomain transcription factor, PAX6 (paired-box 6), is essential for the development and differentiation of pancreatic endocrine cells as well as ocular cells. Despite the impairment of insulin secretion observed in PAX6-deficient mice, evidence implicating causal association between PAX6 gene mutations and monogenic forms of human diabetes is limited. We herein describe a 33-year-old Japanese woman with congenital aniridia who was referred to our hospital because of her uncontrolled diabetes with elevated hemoglobin A1c (13.1%) and blood glucose (32.5 mmol/L) levels. Our biochemical analysis revealed that her insulin secretory capacity was modestly impaired as represented by decreased 24-h urinary C-peptide levels (38.0 µg/day), primarily explaining her diabetes. Intriguingly, there was a trend toward a reduction in her serum glucagon levels as well. Based on the well-recognized association of PAX6 gene mutations with congenital aniridia, we screened the whole PAX6 coding sequence, leading to an identification of a heterozygous Gln135* mutation. We tested our idea that this mutation may at least in part explain the impaired insulin secretion observed in this patient. In cultured pancreatic ß-cells, exogenous expression of the PAX6 Gln135* mutant produced a truncated protein that lacked the transcriptional activity to induce insulin gene expression. Our observation together with preceding reports support the recent attempt to include PAX6 in the growing list of genes causally responsible for monogenic diabetes. In addition, since most cases of congenital aniridia carry PAX6 mutations, we may need to pay more attention to blood glucose levels in these patients. Learning points: PAX6 Gln135* mutation may be causally associated not only with congenital aniridia but also with diabetes. Blood glucose levels may deserve more attention in cases of congenital aniridia with PAX6 mutations. Our case supports the recent attempt to include PAX6 in the list of MODY genes, and Gln135* may be pathogenic.

12.
Sci Rep ; 12(1): 11965, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831378

RESUMO

We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls. The response rate to the survey was 72%; of the 226 respondents, there were 129 males and 97 females (median age 62 years). The fall rate during the first year after discharge was 19%. Logistic regression revealed that knee extension strength, fasting C-peptide (F-CPR) level and dorsiflexion strength were independent predictors of falls. The random forest classifier placed grip strength, F-CPR, knee extension strength, dorsiflexion strength and proliferative diabetic retinopathy among the 5 most important variables for falls. Lower extremity muscle weakness, elevated F-CPR levels and reduced grip strength were shown to be important risk factors for falls in T2D. Analysis by random forest can identify new risk factors for falls in addition to logistic regression.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Modelos Logísticos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Fatores de Risco
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166339, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017029

RESUMO

The pancreatic islet vasculature is of fundamental importance to the ß-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large ß-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary ß-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging. Marked islet capillary dilation was observed in ob/ob mice, but this adaptive change was blunted in db/db mice. Islet blood flow volume was augmented in ob/ob mice, whereas it was reduced in db/db mice. The protein concentrations of total and phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 were increased in ob/ob islets, while they were diminished in db/db mice, indicating decreased eNOS activity. This was accompanied by an increased retention of advanced glycation end-products in db/db blood vessels. Amelioration of diabetes by Elovl6 deficiency involved a restoration of capillary dilation, blood flow, and eNOS phosphorylation in db/db islets. Our findings suggest that the disability of islet capillary dilation due to endothelial dysfunction impairs local islet blood flow, which may play a role in the loss of ß-cell function and further exacerbate type 2 diabetes.


Assuntos
Vasos Sanguíneos/metabolismo , Ilhotas Pancreáticas/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Elongases de Ácidos Graxos/deficiência , Elongases de Ácidos Graxos/genética , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
14.
Int J Infect Dis ; 115: 218-223, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34910957

RESUMO

OBJECTIVES: Favipiravir is an antiviral that is being evaluated for the treatment of COVID-19. Use of favipiravir is associated with elevation of serum uric acid levels. Risk factors for the occurrence of hyperuricemia are unclear. METHODS: Specimens from COVID-19 patients who received 10 days of favipiravir in a previous clinical trial (jRCTs041190120) were used. Serum favipiravir concentrations were measured by LC-MS. Factors associated with the development of hyperuricemia were investigated using logistic regression analysis. Optimal cut-off values for the baseline serum uric acid levels and steady-state serum favipiravir concentrations in predicting the occurrence of hyperuricemia were determined by ROC curve analysis. RESULTS: Among the 66 COVID-19 patients who were treated with favipiravir for 10 days, the steady-state serum favipiravir concentrations were significantly correlated with serum uric acid levels. High baseline serum uric acid levels and steady-state serum favipiravir concentrations during therapy were factors associated with the development of hyperuricemia. The cut­off baseline serum uric acid level and steady-state serum favipiravir concentration during favipiravir administration determined to predict hyperuricemia were 3.7 mg/dL and 46.14 µg/mL, respectively. CONCLUSIONS: Patients with high baseline serum uric acid levels or who achieved high steady-state serum favipiravir concentrations during therapy were susceptible to hyperuricemia.


Assuntos
COVID-19 , Hiperuricemia , Amidas , Humanos , Hiperuricemia/tratamento farmacológico , Pirazinas , SARS-CoV-2 , Ácido Úrico
15.
J Diabetes Res ; 2021: 9961612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660814

RESUMO

AIM: We investigated the relationship between cognitive function and olfactory and physical functions in middle-aged persons with and without type 2 diabetes (T2D) to examine the potential of olfactory and physical functions as biomarkers for early cognitive impairment. METHODS: Enrolled were 70 T2D patients (age 40 to <65 y) and 81 age-matched control participants without diabetes. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCA), Trail Making Test parts A and B (TMT-A/-B), Wisconsin Card Sorting Test (WCST), Quick Inventory of Depressive Symptomatology Self-Report (QIDS), and Starkstein Apathy Scale (SAS). Multiple linear regression analyses were performed. RESULTS: Odor identification was an independent determinant shown in the results of the TMT-A in the entire participant group and was independently associated with the MoCA and TMT-B in the T2D group. Balance capability assessed with a stabilometer was independently associated with all cognitive function tests except for QISD and SAS in the entire participant group and the T2D group and was independently associated with TMT-A in the control group. Knee extension strength was independently associated with the SAS in the entire participant group and the T2D group. CONCLUSIONS: Odor identification, balance capability, and knee extension strength were potential markers for cognitive decline in middle-aged persons with T2D.


Assuntos
Cognição , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Força Muscular , Percepção Olfatória , Equilíbrio Postural , Olfato , Adulto , Fatores Etários , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diagnóstico Precoce , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Exame Físico , Valor Preditivo dos Testes , Fatores de Risco
16.
Biochem Biophys Res Commun ; 562: 146-153, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34052660

RESUMO

While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2). While the regulatory steps for the activation of NRFs have been investigated with particular emphasis on nuclear translocation and proteosomal degradation, unknown redundancy may exist considering the indispensable nature of these defense systems. Here we unraveled that C-terminal binding protein 2 (CtBP2), a transcriptional cofactor with redox-sensing capability, is an obligate partner of NRFs. CtBP2 forms transcriptional complexes with NRF1 and NRF2 that is required to promote the expression of antioxidant genes in response to oxidative insults. Our findings illustrate a basis for understanding the transcriptional regulation of antioxidative defense systems that may be exploited therapeutically.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 1 Relacionado a NF-E2/química , Fator 1 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ligação Proteica , Transcrição Gênica
17.
Clin Med Insights Pediatr ; 15: 1179556521995833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746523

RESUMO

BACKGROUND: Adverse drug events (ADEs) are a burden to the healthcare system. Preventable ADEs, which was ADEs due to medication errors, could be reduced if medication errors can be prevent or ameliorate. OBJECTIVE: We investigated the burden of preventable ADEs on the length of hospital stay (LOS) and costs, and estimated the national burden of preventable ADEs in pediatric inpatients in Japan. METHODS: We analyzed data from the Japan Adverse Drug Events (JADE) study on pediatric patients and estimated the incidence of preventable ADEs and associated extended LOS. Costs attributable to extended LOS by preventable ADEs were calculated using a national statistics database and we calculated the effect of preventable ADEs on national cost excess. RESULTS: We included 907 patients with 7377 patient-days. Among them, 31 patients (3.4%) experienced preventable ADEs during hospitalization. Preventable ADEs significantly increased the LOS by 14.1 days, adjusting for gender, age, ward, resident physician, surgery during hospitalization, cancer, and severe malformation at birth. The individual cost due to the extended LOS of 14.1 days was estimated as USD 8258. We calculated the annual extra expense for preventable ADEs in Japan as USD 329 676 760. Sensitivity analyses, considering the incidence of preventable ADEs and the length of hospital stay, showed that the expected range of annual extra expense for preventable ADEs in Japan is between USD 141 468 968 and 588 450 708. CONCLUSION: Preventable ADEs caused longer hospitalization and considerable extra healthcare costs in pediatric inpatients. Our results would encourage further efforts to prevent and ameliorate preventable ADEs.

18.
Cell Mol Gastroenterol Hepatol ; 11(4): 949-971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33246135

RESUMO

BACKGROUND & AIMS: cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS: CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS: CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS: CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.


Assuntos
Aterosclerose/prevenção & controle , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Regulação da Expressão Gênica , Hiperlipidemias/prevenção & controle , Metabolismo dos Lipídeos , Receptores de LDL/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Feminino , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Elemento Regulador de Esterol/genética
19.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375679

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Assuntos
Complicações do Diabetes/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Idoso , Complicações do Diabetes/complicações , Complicações do Diabetes/patologia , Glucose/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Insulina/biossíntese , Insulina/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Mutação/genética , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/patologia , Ácido Úrico/metabolismo , Cálculos Urinários/complicações , Cálculos Urinários/patologia , Sequenciamento do Exoma
20.
iScience ; 23(3): 100930, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32151974

RESUMO

Mice overexpressing the nuclear form of CREBH mainly in the liver (CREBH-Tg) showed suppression of high-fat high-sucrose (HFHS) diet-induced obesity accompanied by an increase in plasma fibroblast growth factor 21 (FGF21) levels. CREBH overexpression induced browning in inguinal white adipose tissue (WAT) and whole-body energy expenditure, which was canceled in Fgf21-/- mice. Deficiency of FGF21 in CREBH-Tg mice mostly canceled the improvement of obesity, but the suppression of inflammation of epidermal WAT, amelioration of insulin resistance, and improvement of glucose metabolism still sustained. Kisspeptin 1 (Kiss1) was identified as a novel hormone target for CREBH to explain these FGF21-independent effects of CREBH. Knockdown of Kiss1 in HFHS-fed CREBH-Tg Fgf21-/- mice showed partially canceled improvement of glucose metabolism. Taken together, we propose that hepatic CREBH pleiotropically improves diet-induced obesity-mediated dysfunctions in peripheral tissues by improving systemic energy metabolism in FGF21-dependent and FGF21-independent mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...