Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1353682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590438

RESUMO

Introduction: Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods: Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results: Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1ß levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion: These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Camundongos , Burkholderia pseudomallei/metabolismo , Melioidose/microbiologia , Macrófagos/microbiologia , Citocinas/metabolismo , Transdução de Sinais
2.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399210

RESUMO

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Assuntos
Coxiella burnetii , Febre Q , Animais , Humanos , Peptidilprolil Isomerase/metabolismo , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Bactérias/metabolismo , Macrófagos/metabolismo
3.
Nat Commun ; 13(1): 6557, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450721

RESUMO

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.


Assuntos
Streptococcus pyogenes , Sulfametoxazol , Sulfametoxazol/farmacologia , Antibacterianos/farmacologia , Especificidade por Substrato , Ácido Fólico
4.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35245364

RESUMO

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Assuntos
Proteínas de Bactérias , Bactérias Gram-Negativas , Leishmania major , Peptidilprolil Isomerase , Proteínas de Protozoários , Proteínas de Bactérias/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Proteínas Recombinantes
5.
Allergy ; 75(12): 3195-3207, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32578219

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes exacerbations of asthma and preschool wheeze (PSW). However, the anti-viral and repair responses of the bronchial epithelium in children with severe therapy-resistant asthma (STRA) and PSW are poorly understood. METHODS: Children with STRA (age 12 [6-16] years), PSW (age 2 [1-5] years) and non-asthmatic controls (age 7 [2-14] years) underwent bronchoscopy with endobronchial brushings and biopsies. Anti-viral, wound injury responses were quantified in biopsies and primary bronchial epithelial cells (PBECs) in response to RSV, poly(I:C), house dust mite (HDM) or IL-33 using RT-qPCR, Luminex and live cell imaging. Collagen deposition and tissue expression of epithelial growth factor receptor (EGFR), IL-33 and receptor ST2 were investigated in bronchial biopsies. RESULTS: PBECs from STRA and PSW had increased TLR3 gene expression and increased secretion of anti-viral and pro-inflammatory cytokines (IFN-γ, IL-6 and IL-13) in response to RSV compared to controls. Exposure of PBECs to concomitant TLR3 agonist poly(I:C) and HDM resulted in a significant reduction in epithelial cell proliferation in PSW compared to controls. Wound-healing was also impaired in PSW compared to controls at baseline and following IL-33 stimulation. In addition, tissue EGFR expression was significantly reduced in PSW and correlated with collagen deposition in endobronchial biopsies. CONCLUSIONS: Despite increased anti-viral responses, preschool children with severe wheeze had impaired airway epithelial proliferative responses following damage. This might be connected to the low expression of EGFR in PSW which may affect epithelial function and contribute to asthma pathogenesis.


Assuntos
Asma , Infecções por Vírus Respiratório Sincicial , Adolescente , Remodelação das Vias Aéreas , Animais , Criança , Pré-Escolar , Células Epiteliais , Humanos , Lactente , Sons Respiratórios
6.
Nat Immunol ; 21(1): 86-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844327

RESUMO

By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Variação Genética/genética , Ensaios de Triagem em Larga Escala/métodos , Imunofenotipagem/métodos , Infecções por Salmonella/imunologia , Animais , Citrobacter/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Salmonella/imunologia , Infecções por Salmonella/microbiologia
7.
J Allergy Clin Immunol ; 134(1): 25-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767874

RESUMO

BACKGROUND: Asthma exacerbations are associated with human rhinovirus (HRV) infections, and more severe exacerbations are associated with HRV-C. We have previously shown that the HRV-C-specific antibody response is low in healthy adult sera and that most of the antibody to HRV-C is cross-reactive with HRV-A. OBJECTIVES: To compare the antibody response to each HRV species in asthmatic and nonasthmatic children in whom the type of HRV infection was known. METHODS: Total and specific IgG1 binding to HRV viral capsid protein antigens of HRV-A, -B, and -C were tested in the plasma from nonasthmatic children (n = 47) and children presenting to the emergency department with asthma exacerbations (n = 96). HRV, found in most of the children at the time of their exacerbation (72%), was analyzed using molecular typing. RESULTS: Asthmatic children had higher antibody responses to HRV. The titers specific to HRV-A, and to a lesser extent HRV-B, were higher than in nonasthmatic controls. The species-specific responses to HRV-C were markedly lower than titers to HRV-A and HRV-B in both asthmatic and nonasthmatic children (P < .001). The titers both at presentation and after convalescence were not associated with the HRV genotype detected during the exacerbation. CONCLUSIONS: The higher total anti-HRV antibody titers of asthmatic children and their higher anti-HRV-A and -B titers show their development of a heightened antiviral immune response. The low species-specific HRV-C titers found in all groups, even when the virus was found, point to a different and possibly less efficacious immune response to this species.


Assuntos
Anticorpos Antivirais/sangue , Asma/imunologia , Imunoglobulina G/sangue , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Adolescente , Asma/complicações , Asma/patologia , Asma/virologia , Proteínas do Capsídeo/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Feminino , Humanos , Imunidade Humoral , Lactente , Masculino , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Ligação Proteica , Rhinovirus/classificação , Índice de Gravidade de Doença , Especificidade da Espécie
8.
PLoS One ; 8(8): e70552, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950960

RESUMO

BACKGROUND: Human rhinoviruses (HRV) are associated with upper and lower respiratory illnesses, including severe infections causing hospitalization in both children and adults. Although the clinical significance of HRV infections is now well established, no detailed investigation of the immune response against HRV has been performed. The purpose of this study was to assess the IgG1 antibody response to the three known HRV species, HRV-A, -B and -C in healthy subjects. METHODS: Recombinant polypeptides of viral capsid protein 1 (VP1) from two genotypes of HRV-A, -B and -C were expressed as glutathione S-transferase (GST) fusion proteins and purified by affinity and then size exclusion chromatography. The presence of secondary structures similar to the natural antigens was verified by circular dichroism analysis. Total and species-specific IgG1 measurements were quantitated by immunoassays and immunoabsorption using sera from 63 healthy adults. RESULTS: Most adult sera reacted with the HRV VP1 antigens, at high titres. As expected, strong cross-reactivity between HRV genotypes of the same species was found. A high degree of cross-reactivity between different HRV species was also evident, particularly between HRV-A and HRV-C. Immunoabsorption studies revealed HRV-C specific titres were markedly and significantly lower than the HRV-A and HRV-B specific titres (P<0.0001). A truncated construct of HRV-C VP1 showed greater specificity in detecting anti-HRV-C antibodies. CONCLUSIONS: High titres of IgG1 antibody were bound by the VP1 capsid proteins of HRV-A, -B and -C, but for the majority of people, a large proportion of the antibody to HRV-C was cross-reactive, especially to HRV-A. The improved specificity found for the truncated HRV-C VP1 indicates species-specific and cross-reactive regions could be defined.


Assuntos
Anticorpos Antivirais/imunologia , Imunoglobulina G/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Proteínas Virais/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/metabolismo , Reações Antígeno-Anticorpo/imunologia , Sequência de Bases , Dicroísmo Circular , Reações Cruzadas/imunologia , Eletroforese em Gel de Poliacrilamida , Feminino , Genótipo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Infecções por Picornaviridae/sangue , Infecções por Picornaviridae/virologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Rhinovirus/classificação , Rhinovirus/genética , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...