Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(7): 3799-3816, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35333350

RESUMO

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.


Assuntos
Meiose , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Fosfoproteínas/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complexo Sinaptonêmico , Coesinas
2.
Nat Commun ; 10(1): 5688, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831736

RESUMO

Senescence is induced by various stimuli such as oncogene expression and telomere shortening, referred to as oncogene-induced senescence (OIS) and replicative senescence (RS), respectively, and accompanied by global transcriptional alterations and 3D genome reorganization. Here, we demonstrate that the human condensin II complex participates in senescence via gene regulation and reorganization of euchromatic A and heterochromatic B compartments. Both OIS and RS are accompanied by A-to-B and B-to-A compartmental transitions, the latter of which occur more frequently and are undergone by 14% (430 Mb) of the human genome. Mechanistically, condensin is enriched in A compartments and implicated in B-to-A transitions. The full activation of senescence genes (SASP genes and p53 targets) requires condensin; its depletion impairs senescence markers. This study describes that condensin reinforces euchromatic A compartments and promotes B-to-A transitions, both of which are coupled to optimal expression of senescence genes, thereby allowing condensin to contribute to senescent processes.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Senescência Celular/genética , Senescência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cromatina , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica , Humanos , Proteínas Nucleares/genética , Oncogenes , Regiões Promotoras Genéticas , Encurtamento do Telômero , Proteína Supressora de Tumor p53/genética
3.
Sci Adv ; 5(5): eaaw5294, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31131328

RESUMO

ARID1A, a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex, localizes to both promoters and enhancers to influence transcription. However, the role of ARID1A in higher-order spatial chromosome partitioning and genome organization is unknown. Here, we show that ARID1A spatially partitions interphase chromosomes and regulates higher-order genome organization. The SWI/SNF complex interacts with condensin II, and they display significant colocalizations at enhancers. ARID1A knockout drives the redistribution of condensin II preferentially at enhancers, which positively correlates with changes in transcription. ARID1A and condensin II contribute to transcriptionally inactive B-compartment formation, while ARID1A weakens the border strength of topologically associated domains. Condensin II redistribution induced by ARID1A knockout positively correlates with chromosome sizes, which negatively correlates with interchromosomal interactions. ARID1A loss increases the trans interactions of small chromosomes, which was validated by three-dimensional interphase chromosome painting. These results demonstrate that ARID1A is important for large-scale genome folding and spatially partitions interphase chromosomes.


Assuntos
Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/fisiologia , Interfase/genética , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/química , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/química , Análise por Conglomerados , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Ligação Proteica , RNA-Seq , Serina Endopeptidases/química , Fatores de Transcrição/genética
4.
Nat Cell Biol ; 21(3): 397-407, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778219

RESUMO

Cellular senescence is a stable growth arrest that is implicated in tissue ageing and cancer. Senescent cells are characterized by an upregulation of proinflammatory cytokines, which is termed the senescence-associated secretory phenotype (SASP). NAD+ metabolism influences both tissue ageing and cancer. However, the role of NAD+ metabolism in regulating the SASP is poorly understood. Here, we show that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway, governs the proinflammatory SASP independent of senescence-associated growth arrest. NAMPT expression is regulated by high mobility group A (HMGA) proteins during senescence. The HMGA-NAMPT-NAD+ signalling axis promotes the proinflammatory SASP by enhancing glycolysis and mitochondrial respiration. HMGA proteins and NAMPT promote the proinflammatory SASP through NAD+-mediated suppression of AMPK kinase, which suppresses the p53-mediated inhibition of p38 MAPK to enhance NF-κB activity. We conclude that NAD+ metabolism governs the proinflammatory SASP. Given the tumour-promoting effects of the proinflammatory SASP, our results suggest that anti-ageing dietary NAD+ augmentation should be administered with precision.


Assuntos
Senescência Celular , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , NAD/metabolismo , Animais , Linhagem Celular , Citocinas/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Fenótipo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Nat Struct Mol Biol ; 24(11): 965-976, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991264

RESUMO

Eukaryotic genomes are highly ordered through various mechanisms, including topologically associating domain (TAD) organization. We employed an in situ Hi-C approach to follow the 3D organization of the fission yeast genome during the cell cycle. We demonstrate that during mitosis, large domains of 300 kb-1 Mb are formed by condensin. This mitotic domain organization does not suddenly dissolve, but gradually diminishes until the next mitosis. By contrast, small domains of 30-40 kb that are formed by cohesin are relatively stable across the cell cycle. Condensin and cohesin mediate long- and short-range contacts, respectively, by bridging their binding sites, thereby forming the large and small domains. These domains are inversely regulated during the cell cycle but assemble independently. Our study describes the chromosomal oscillation between the formation and decay phases of the large and small domains, and we predict that the condensin-mediated domains serve as chromosomal compaction units.


Assuntos
Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Genoma Fúngico , Mitose , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Coesinas
6.
J Cell Biol ; 215(3): 325-334, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27799366

RESUMO

Cellular senescence is a stable cell growth arrest that is characterized by the silencing of proliferation-promoting genes through compaction of chromosomes into senescence-associated heterochromatin foci (SAHF). Paradoxically, senescence is also accompanied by increased transcription of certain genes encoding for secreted factors such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). How SASP genes are excluded from SAHF-mediated global gene silencing remains unclear. In this study, we report that high mobility group box 2 (HMGB2) orchestrates the chromatin landscape of SASP gene loci. HMGB2 preferentially localizes to SASP gene loci during senescence. Loss of HMGB2 during senescence blunts SASP gene expression by allowing for spreading of repressive heterochromatin into SASP gene loci. This correlates with incorporation of SASP gene loci into SAHF. Our results establish HMGB2 as a novel master regulator that orchestrates SASP through prevention of heterochromatin spreading to allow for exclusion of SASP gene loci from a global heterochromatin environment during senescence.


Assuntos
Senescência Celular , Cromatina/metabolismo , Loci Gênicos , Proteína HMGB2/metabolismo , Via Secretória , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Senescência Celular/genética , Regulação da Expressão Gênica , Heterocromatina/metabolismo , Humanos , Fenótipo , Ligação Proteica , Via Secretória/genética
7.
Nat Genet ; 48(10): 1242-52, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548313

RESUMO

It is becoming clear that structural-maintenance-of-chromosomes (SMC) complexes such as condensin and cohesin are involved in three-dimensional genome organization, yet their exact roles in functional organization remain unclear. We used chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We found that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates associations between loci positioned within 100 kb of each other; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization and mitotic chromosome organization to support faithful chromosome segregation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genes Fúngicos , Genes cdc , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Domínios Proteicos , Schizosaccharomyces/metabolismo , Coesinas
8.
Curr Genet ; 62(4): 739-743, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27061734

RESUMO

Genome/chromosome structures are formed by a hierarchy of organizing processes ranging from gene interactions to chromosome territory formation. The SMC complex, cohesin, mediates interactions among enhancers and promoters, thereby regulating transcription. Another SMC complex, condensin, also plays critical roles in genome organization, although the detailed mechanisms remain much less well understood. Here, we discuss our recent findings on how fission yeast condensin mediates interactions among genes and how condensin-dependent interactions play dual roles in the chromosome territory arrangement during interphase and in mitotic chromosome organization, which supports the fidelity of chromosome segregation. Our studies suggest that condensin serves as a functional ligature connecting gene interactions, chromosome territory arrangement, transcriptional regulation, and chromosome segregation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregação de Cromossomos , Regulação Fúngica da Expressão Gênica , Mitose , Ligação Proteica , Transporte Proteico , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica
9.
Nucleic Acids Res ; 44(8): 3618-28, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704981

RESUMO

Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Ciclo Celular/genética , Posicionamento Cromossômico , Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Centrômero , Coloração Cromossômica , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Mutação , RNA Polimerase III , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
10.
Mol Cell ; 59(5): 755-67, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26257282

RESUMO

Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Mitose , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Proteína de Ligação a TATA-Box/química
11.
Methods Mol Biol ; 1300: 169-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25916713

RESUMO

DNA replication is tightly coupled with DNA repair processes in order to preserve genomic integrity. During DNA replication, the replication fork encounters a variety of obstacles including DNA damage/adducts, secondary structures, and programmed fork-blocking sites, which are all difficult to replicate. The replication fork also collides with the transcription machinery, which shares the template DNA with the replisome complex. Under these conditions, replication forks stall, causing replication stress and/or fork collapse, ultimately leading to genomic instability. The mechanisms to overcome these replication problems remain elusive. Therefore, it is important to investigate how DNA repair and replication factors are recruited and coordinated at chromosomal regions that are difficult to replicate. In this chapter, we describe a chromatin immunoprecipitation method to locate proteins required for DNA repair during DNA replication in the fission yeast Schizosaccharomyces pombe. This method can also easily be adapted to study replisome components or chromatin-associated factors.


Assuntos
Imunoprecipitação da Cromatina/métodos , Reparo do DNA , Replicação do DNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos/farmacologia , Ciclo Celular , Extratos Celulares , Reagentes de Ligações Cruzadas/farmacologia , Instabilidade Genômica , Reação em Cadeia da Polimerase em Tempo Real , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética
12.
Biotechniques ; 55(5): 257-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24215641

RESUMO

We describe a series of new vectors for PCR-based epitope tagging and gene disruption in the fission yeast Schizosaccharomyces pombe, an exceptional model organism for the study of cellular processes. The vectors are designed for amplification of gene-targeting DNA cassettes and integration into specific genetic loci, allowing expression of proteins fused to 12 tandem copies of the Pk (V5) epitope or 5 tandem copies of the FLAG epitope with a glycine linker. These vectors are available with various antibiotic or nutritional markers and are useful for protein studies using biochemical and cell biological methods. We also describe new vectors for fluorescent protein-tagging and gene disruption using ura4MX6, LEU2MX6, and his3MX6 selection markers, allowing researchers in the S. pombe community to disrupt genes and manipulate genomic loci using primer sets already available for the widely used pFA6a-MX6 system. Our new vectors may also be useful for gene manipulation in Saccharomyces cerevisiae.


Assuntos
DNA Fúngico/genética , Epitopos/genética , Marcação de Genes/métodos , Vetores Genéticos/genética , Schizosaccharomyces/genética , Deleção de Genes , Reação em Cadeia da Polimerase/métodos
13.
J Cell Sci ; 126(Pt 22): 5271-83, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23986481

RESUMO

Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.


Assuntos
Centrômero/genética , Interfase/genética , Mitose/genética , Schizosaccharomyces/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Benzimidazóis/farmacologia , Carbamatos/farmacologia , DNA Ribossômico/genética , DNA Ribossômico/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Genoma Fúngico , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mitose/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/ultraestrutura , RNA de Transferência/genética , RNA de Transferência/ultraestrutura , Retroelementos/genética , Schizosaccharomyces/citologia , Telômero/genética , Telômero/ultraestrutura
14.
Mol Cell ; 48(4): 532-46, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084836

RESUMO

Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.


Assuntos
Adenosina Trifosfatases/metabolismo , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complexos Multiproteicos/metabolismo , Acetilação , Adenosina Trifosfatases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Gene ; 493(2): 195-200, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21195141

RESUMO

Eukaryotic genomes exist as an elaborate three-dimensional structure in the nucleus. Recent studies have shown that this higher-order organization of the chromatin fiber is coupled to various nuclear processes including transcription. In fission yeast, we demonstrated that RNA polymerase III (Pol III)-transcribed genes such as tRNA and 5S rRNA genes, dispersed throughout chromosomal arm regions, localize to centromeres in interphase. This centromeric association of Pol III genes, mediated by the condensin complex, becomes prominent during mitosis. Here, we discuss potential roles of the Pol III gene-mediated genome organization during interphase and mitosis, and hypothesize that the interphase genome structure serves as a scaffold for the efficient assembly of condensed mitotic chromosomes and that tethering of chromosomal arm regions to centromeres allows chromosomes to properly segregate along the spindle microtubules during anaphase.


Assuntos
Genoma Fúngico , RNA Polimerase III/genética , Schizosaccharomyces/genética , Centrômero/genética , Segregação de Cromossomos , Interfase , Mitose
17.
Nucleic Acids Res ; 38(22): 8164-77, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21030438

RESUMO

We have comprehensively mapped long-range associations between chromosomal regions throughout the fission yeast genome using the latest genomics approach that combines next generation sequencing and chromosome conformation capture (3C). Our relatively simple approach, referred to as enrichment of ligation products (ELP), involves digestion of the 3C sample with a 4 bp cutter and self-ligation, achieving a resolution of 20 kb. It recaptures previously characterized genome organizations and also identifies new and important interactions. We have modeled the 3D structure of the entire fission yeast genome and have explored the functional relationships between the global genome organization and transcriptional regulation. We find significant associations among highly transcribed genes. Moreover, we demonstrate that genes co-regulated during the cell cycle tend to associate with one another when activated. Remarkably, functionally defined genes derived from particular gene ontology groups tend to associate in a statistically significant manner. Those significantly associating genes frequently contain the same DNA motifs at their promoter regions, suggesting that potential transcription factors binding to these motifs are involved in defining the associations among those genes. Our study suggests the presence of a global genome organization in fission yeast that is functionally similar to the recently proposed mammalian transcription factory.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Schizosaccharomyces/genética , Transcrição Gênica , Ciclo Celular/genética , DNA Fúngico/química , Loci Gênicos , Genômica/métodos , Hibridização in Situ Fluorescente , Modelos Moleculares , Mapeamento Físico do Cromossomo , Retroelementos , Schizosaccharomyces/metabolismo , Sequências Repetidas Terminais
18.
Nat Cell Biol ; 12(7): 719-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562864

RESUMO

Heterochromatin protein 1 (HP1) has an essential role in heterochromatin formation and mitotic progression through its interaction with various proteins. We have identified a unique HP1alpha-binding protein, POGZ (pogo transposable element-derived protein with zinc finger domain), using an advanced proteomics approach. Proteins generally interact with HP1 through a PxVxL (where x is any amino-acid residue) motif; however, POGZ was found to bind to HP1alpha through a zinc-finger-like motif. Binding by POGZ, mediated through its zinc-finger-like motif, competed with PxVxL proteins and destabilized the HP1alpha-chromatin interaction. Depletion experiments confirmed that the POGZ HP1-binding domain is essential for normal mitotic progression and dissociation of HP1alpha from mitotic chromosome arms. Furthermore, POGZ is required for the correct activation and dissociation of Aurora B kinase from chromosome arms during M phase. These results reveal POGZ as an essential protein that links HP1alpha dissociation with Aurora B kinase activation during mitosis.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transposases/metabolismo , Aurora Quinase B , Aurora Quinases , Western Blotting , Linhagem Celular , Cromátides/genética , Cromátides/metabolismo , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Imunoprecipitação , Cinetocoros/metabolismo , Espectrometria de Massas , Microscopia de Fluorescência , Mitose/genética , Ligação Proteica , Interferência de RNA , Transposases/genética , Técnicas do Sistema de Duplo-Híbrido
19.
J Cell Biol ; 188(6): 791-807, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20231385

RESUMO

Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Linhagem Celular , Centrômero/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Nucleares
20.
Mol Biol Cell ; 21(2): 254-65, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19910488

RESUMO

The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III-transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.


Assuntos
Centrômero/enzimologia , Centrômero/genética , DNA Polimerase III/genética , Genes Fúngicos/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/genética , Interfase , Mitose , Complexos Multiproteicos/genética , Mutação/genética , Ligação Proteica , Transporte Proteico , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...