Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346537

RESUMO

Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.


Assuntos
Processamento Alternativo , DNA Satélite , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , RNA de Cadeia Dupla , Humanos , Processamento Alternativo/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Progressão da Doença , Invasividade Neoplásica/genética , DNA Satélite/genética
2.
Sci Rep ; 14(1): 127, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177136

RESUMO

We have developed a state-of-the-art apparatus for laser-based spin- and angle-resolved photoemission spectroscopy with micrometer spatial resolution (µ-SARPES). This equipment is realized by the combination of a high-resolution photoelectron spectrometer, a 6 eV laser with high photon flux that is focused down to a few micrometers, a high-precision sample stage control system, and a double very-low-energy-electron-diffraction spin detector. The setup achieves an energy resolution of 1.5 (5.5) meV without (with) the spin detection mode, compatible with a spatial resolution better than 10 µm. This enables us to probe both spatially-resolved electronic structures and vector information of spin polarization in three dimensions. The performance of µ-SARPES apparatus is demonstrated by presenting ARPES and SARPES results from topological insulators and Au photolithography patterns on a Si (001) substrate.

3.
iScience ; 26(2): 106021, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36798431

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to the difficulty of its diagnosis. Because human satellite II (HSATII) RNA, a satellite repeat RNA, is highly and specifically expressed in human PDAC, the serum HSATII RNA level may be a biomarker of PDAC. To measure the serum HSATII RNA level with high sensitivity and reproducibility, we previously developed a convenient method, tandem repeat amplification by nuclease protection (TRAP) combined with droplet digital PCR (ddPCR). Here, we refined the original method by simultaneously measuring the serum miR-21-5p level to enhance the detection of PDAC. The resulting PDAC-Index, constructed using serum HSATII RNA and miR-21-5p levels, discriminated patients with PDAC with high accuracy. We verified the clinical usefulness of the PDAC-Index as a supportive test in difficult-to-diagnose cases. The PDAC-Index has satisfactory diagnostic performance and may routinely be applied for detecting PDAC.

4.
Cancer Gene Ther ; 29(5): 505-518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33833413

RESUMO

Mutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Carcinogênese , Carcinoma Ductal Pancreático/metabolismo , Humanos , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
5.
J Hum Genet ; 66(2): 181-191, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32879441

RESUMO

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are produced from pre-mRNAs through a process known as back-splicing. Although circRNAs are expressed under specific conditions, current understanding of their comprehensive expression status is still limited. Here, we performed a large-scale circRNA profiling analysis in human pancreatic ductal adenocarcinoma (PDAC) tissues, using circular RNA-specific RNA sequencing. We identified more than 40,000 previously unknown circRNAs, some of which were upregulated in PDAC tissues, compared with normal pancreatic tissues. We determined the full-length sequence of a circRNA upregulated in PDAC, which was derived from two noncoding RNA loci on chromosome 12. The novel circRNA, named circPDAC RNA, was not expressed in normal human cells, but was expressed in PDAC and other carcinoma cells. While postulated biological functions, such as peptide production from the circPDAC RNA, were not detected, its aberrant expression was confirmed in other PDAC tissues and in serum from a PDAC patient. These results demonstrate that comprehensive studies are necessary to reveal the expression status of circRNAs and that the circPDAC RNA identified here might serve as a novel biomarker for cancers, including PDAC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , RNA Circular/genética , Carcinoma Ductal Pancreático/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Análise de Sequência de RNA , Células Tumorais Cultivadas
6.
Front Cell Dev Biol ; 8: 568366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117799

RESUMO

Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed continuous loop. The expression pattern of circRNA varies among cell types and tissues, and many circRNAs are aberrantly expressed in various cancers. Aberrantly expressed circRNAs have been shown to play crucial roles in carcinogenesis, functioning as microRNA sponges or new templates for protein translation. Recent research has shown that circRNAs are enriched in exosomes. Exosomes are secretory vesicles that mediate intercellular communication through the delivery of cargo, including proteins, lipids, DNA, and RNA. Exosome-mediated crosstalk between cancer cells and the tumor microenvironment promotes the epithelial-mesenchymal transition, angiogenesis, and immune escape, and thus may contribute to cancer invasion and metastasis. In this review, we discuss the biological functions of exosomal circRNAs and their significance in cancer progression. Additionally, we discuss the potential clinical applications of exosomal circRNAs as biomarkers and in cancer therapy.

7.
MedComm (2020) ; 1(3): 302-310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766124

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease and highly resistant to all forms of therapy. PDAC cells reprogram their metabolism extensively to promote their survival and growth. Reflecting the vital role of altered metabolism, experimental and clinical trials targeting the rewired metabolism are currently underway. In this review, we summarize the vital role of metabolic reprogramming in the development of PDAC and the future of novel therapeutic applications.

8.
Oncol Rep ; 42(4): 1459-1466, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31322270

RESUMO

The expression of CDR1­AS, a representative circular RNA, is closely linked with poor prognosis in gastrointestinal cancers, such as colon, liver, and pancreatic cancers. Although it is well known that CDR1­AS antagonizes microRNA­7 function through its sequence similarities in the brain, its biological function and link with the malignant potential of cancer cells remain unclear, partly due to the difficulties of ectopic expression of circular RNAs. In the present study, SW620, a colon cancer cell line that stably expresses CDR1­AS RNA circularized, was established using the laccase 2 gene cassette, and its biological function associated with malignant behavior was determined. In contrast to previous studies, cell growth or invasion ability was not altered by CDR1­AS expression. However, the expression levels of CMTM4 and CMTM6, which were recently recognized as critical regulators of PD­L1 protein expression at the cell surface, were significantly increased. Accordingly, the cell surface PD­L1 protein levels were increased in CDR1­AS­expressing cells. Notably, the effects were not canceled out by overexpressing microRNA­7, indicating that the increase in cell surface PD­L1 in CDR1­AS­expressing cells was not dependent on microRNA­7 function. These results indicated that expression of this circular RNA in cancer cells may lead to poor prognosis by increasing cell surface PD­L1 levels through microRNA­7­independent mechanisms.


Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Antígeno B7-H1/genética , Células CACO-2 , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HEK293 , Humanos , Imuno-Histoquímica , Proteínas com Domínio MARVEL/biossíntese , Proteínas com Domínio MARVEL/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas da Mielina , Invasividade Neoplásica , Prognóstico , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
World J Clin Cases ; 6(15): 882-891, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30568942

RESUMO

Pancreatic cancer is a malignancy with an extremely poor prognosis. Chronic pancreatitis is a well-known risk factor for pancreatic cancer. Inflammation is thought to influence carcinogenesis through DNA damage and activation of intracellular signaling pathways. Many transcription factors and signaling pathways co-operate to determine and maintain cell identity at each phase of pancreatic organogenesis and cell differentiation. Recent studies have shown that carcinogenesis is promoted through the suppression of transcription factors related to differentiation. Pancreatitis also demonstrates transcriptional changes, suggesting that multifactorial epigenetic changes lead to impaired differentiation. Taken together, these factors may constitute an important framework for pancreatic carcinogenesis. In this review, we discuss the role of inflammation and de-differentiation in the development of pancreatic cancer, as well as the future of novel therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...