Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491227

RESUMO

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Assuntos
Bioensaio , Replicação do DNA , Animais , Cricetinae , Feminino , Humanos , Masculino , Animais Geneticamente Modificados , Mesocricetus , Mutação
2.
Epidemiol Infect ; 152: e24, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258464

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 in China and rapidly spread worldwide, leading to a pandemic. The threat of SARS-CoV-2 is subsiding as most people have acquired sufficient antibodies through vaccination and/or infection to prevent severe COVID-19. After the emergence of the omicron variants, the seroprevalence of antibodies against the N protein elicited by SARS-CoV-2 infection ranged from 44.4% to 80.2% in countries other than Japan. Here, we assessed the seroprevalence in Japan before and after the appearance of omicron variants. Serosurveillance of antibodies against N was conducted between December 2021 and March 2023 in Japan. In total, 7604 and 3354 residual serum or plasma samples were collected in the Tokyo metropolitan area and Sapporo, respectively. We found that the seroprevalence in representative regions of Japan increased approximately 3% to 23% after the emergence of the omicron variants. We also found higher seroprevalence among the young compared with the elderly. Our findings indicate that unlike other countries, most of the Japanese population has not been infected, raising the possibility of future SARS-CoV-2 epidemics in Japan.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Japão/epidemiologia , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Anticorpos Antivirais , Pandemias
3.
Intern Med ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171874

RESUMO

Objective Prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been reported in immunocompromised patients, as they poorly develop antibodies against SARS-CoV-2. We conducted a clinical trial to determine the efficacy of Imdevimab/Casirivimab (Imde/Casiri), an anti-viral monoclonal antibody (mAb), for prolonged infection at our institution. Methods Nine patients with hematological malignancies (six with malignant lymphoma and three with multiple myeloma) in our institution presented with coronavirus disease 2019 caused by SARS-CoV-2 omicron variants (one, five, and one with BA.2, BA.5, and BF.7, respectively; two undetermined). Although not all nine patients developed severe disease, viral mRNA was detected in all patients after treatment with remdesivir or molnupiravir. Imde/casiri was infused 11-49 days after the disease onset. Results Within seven days of infusion, viral RNA was undetectable in five of the nine cases. Because all seven viruses isolated from patients whose viral RNA became undetectable showed low or no sensitivity to this monoclonal antibody cocktail, the disappearance of viral RNA in these cases may not be attributable to the antibody cocktail. Conclusion It may be worth considering the use of monoclonal antibodies that show some activity against these virus variants to treat persistent SARS-CoV-2 infection in immunocompromised patients.

4.
NPJ Vaccines ; 9(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167505

RESUMO

Here, we assessed the efficacy of a lipid nanoparticle-based mRNA vaccine candidate encoding the receptor-binding domain (LNP-mRNA-RBD) in mice. Mice immunized with LNP-mRNA-RBD based on the ancestral strain (ancestral-type LNP-mRNA-RBD) showed similar cellular responses against the ancestral strain and BA.5, but their neutralizing activity against BA.5 was lower than that against the ancestral strain. The ancestral-type LNP-mRNA-RBD protected mice from the ancestral strain or BA.5 challenge; however, its ability to reduce the viral burdens after BA.5 challenge was limited. In contrast, immunization with bivalent LNP-mRNA-RBD consisting of the ancestral-type and BA.4/5-type LNP-mRNA-RBD or monovalent BA.4/5-type LNP-mRNA-RBD elicited robust cellular responses, as well as high and moderate neutralizing titers against BA.5 and XBB.1.5, respectively. Furthermore, the vaccines containing BA.4/5-type LNP-mRNA-RBD remarkably reduced the viral burdens following BA.5 or XBB.1.5 challenge. Overall, our findings suggest that LNP-mRNA-RBD is effective against SARS-CoV-2 infection.

5.
BMC Microbiol ; 24(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172680

RESUMO

BACKGROUND: People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT: The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION: The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Infecções por HIV , Humanos , HIV , COVID-19/complicações , Disbiose , RNA Ribossômico 16S/genética , SARS-CoV-2 , Infecções por HIV/complicações
6.
J Infect Chemother ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38242284

RESUMO

The management of persistent symptomatic coronavirus disease 2019 (COVID-19) infections in immunocompromised patients remains unclear. Here, we present the first case of successful antiviral therapy (nirmatrelvir/ritonavir and remdesivir) in combination with intravenous immunoglobulin (IVIg) in a patient who had received CD20 depleting therapy for follicular lymphoma and experienced recurrent COVID-19 relapses. After the patient received IVIg treatment, the viral load decreased without recurrence. Subsequently, it was found that the anti-spike antibody titer in the administered immunoglobulin was high at 9528.0 binding antibody units/mL. Our case highlights the potential of combination therapy with selective IVIg and antiviral drugs for relapsed immunocompromised COVID-19 patients who have received CD20 depleting therapy.

7.
Viruses ; 15(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38140522

RESUMO

Cardiovascular disease is one of many risk factors that have been linked to increased severity or mortality in coronavirus disease 2019 (COVID-19) patients; however, the exact role of SARS-CoV-2 in the pathogenesis of cardiac inflammatory injury has not been established. A previous study reported that SARS-CoV-2 causes more severe disease with cardiomyopathy in a J2N-k animal model. Here, we investigated the sensitivity of J2N-k hamsters, as a cardiomyopathy animal model, to a delta strain of SARS-CoV-2 compared to J2N-n control animals. We found that J2N-k hamsters were less susceptible to this delta strain than J2N-n animals, and we found no evidence that cardiomyopathy is a risk factor in this animal model. Since the previous study reported that SARS-CoV-2 causes more severe disease with cardiomyopathy in the same animal model, further analysis of the relationship between cardiomyopathy and SARS-CoV-2 infection is needed.


Assuntos
COVID-19 , Cardiomiopatias , Humanos , Cricetinae , Animais , SARS-CoV-2 , COVID-19/complicações , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Mesocricetus
8.
Cell Rep ; 42(12): 113580, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38103202

RESUMO

EG.5.1 is a subvariant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB variant that is rapidly increasing in prevalence worldwide. However, the pathogenicity, transmissibility, and immune evasion properties of isolates of EG.5.1 are largely unknown. Here, we show that there are no obvious differences in growth ability and pathogenicity between EG.5.1 and XBB.1.5 in hamsters. We also demonstrate that, like XBB.1.5, EG.5.1 is transmitted more efficiently between hamsters compared to its predecessor, BA.2. In contrast, unlike XBB.1.5, we detect EG.5.1 in the lungs of four of six exposed hamsters, suggesting that the virus properties of EG.5.1 are different from those of XBB.1.5. Finally, we find that the neutralizing activity of plasma from convalescent individuals against EG.5.1 was slightly, but significantly, lower than that against XBB.1.5 or XBB.1.9.2. Our data suggest that the different virus properties after transmission and the altered antigenicity of EG.5.1 may be driving its increasing prevalence over XBB.1.5 in humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Evasão da Resposta Imune , Morfogênese , Anticorpos Neutralizantes
9.
iScience ; 26(11): 108147, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876803

RESUMO

The emergence and spread of new SARS-CoV-2 variants with mutations in the spike protein, such as the XBB.1.5 and XBB.1.9.1 sublineages, raise concerns about the efficacy of current COVID-19 vaccines and therapeutic monoclonal antibodies (mAbs). In this study, none of the mAbs we tested neutralized XBB.1.9.1 or XBB.1.5, even at the highest concentration used. We also found that the bivalent mRNA vaccine could enhance humoral immunity against XBB.1.9.1, but that XBB.1.9.1 and XBB.1.5 still evaded humoral immunity induced by vaccination or infection. Moreover, the susceptibility of XBB.1.9.1 to remdesivir, molnupiravir, nirmatrelvir, and ensitrelvir was similar to that of the ancestral strain and the XBB.1.5 isolate in vitro. Finally, we found the replicative fitness of XBB.1.9.1 to be similar to that of XBB.1.5 in hamsters. Our results suggest that XBB.1.9.1 and XBB.1.5 have similar antigenicity and replicative ability, and that the currently available COVID-19 antivirals remain effective against XBB.1.9.1.

10.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796612

RESUMO

Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Camundongos , Células T de Memória , COVID-19/prevenção & controle , SARS-CoV-2 , Pulmão
11.
Virol J ; 20(1): 146, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443091

RESUMO

BACKGROUND: The mucosa serves as the first defence against pathogens and facilitates the surveillance and elimination of symbiotic bacteria by mucosal immunity. Recently, the mRNA vaccine against SARS-CoV-2 has been demonstrated to induce secretory antibodies in the oral and nasal cavities in addition to a systemic immune response. However, the mechanism of induced immune stimulation effect on mucosal immunity and commensal bacteria profile remains unclear. METHODS: Here, we longitudinally analysed the changing nasal microbiota and both systemic and nasal immune response upon SARS-CoV-2 mRNA vaccination, and evaluated how mRNA vaccination influenced nasal microbiota in 18 healthy participants who had received the third BNT162b. RESULTS: The nasal S-RBD IgG level correlated significantly with plasma IgG levels until 1 month and the levels were sustained for 3 months post-vaccination. In contrast, nasal S-RBD IgA induction peaked at 1 month, albeit slightly, and correlated only with plasma IgA, but the induction level decreased markedly at 3 months post-vaccination. 16 S rRNA sequencing of the nasal microbiota post-vaccination revealed not an overall change, but a decrease in certain opportunistic bacteria, mainly Fusobacterium. The decrease in these bacteria was more pronounced in those who exhibited nasal S-RBD IgA induction, and those with higher S-RBD IgA induction had lower relative amounts of potentially pathogenic bacteria such as Pseudomonas pre-vaccination. In addition, plasma and mucosal S-RBD IgG levels correlated with decreased commensal pathogens such as Finegoldia. CONCLUSIONS: These findings suggest that the third dose of SARS-CoV-2 mRNA vaccination induced S-RBD antibodies in the nasal mucosa and may have stimulated mucosal immunity against opportunistic bacterial pathogens. This effect, albeit probably secondary, may be considered one of the benefits of mRNA vaccination. Furthermore, our data suggest that a cooperative function of mucosal and systemic immunity in the reduction of bacteria and provides a better understanding of the symbiotic relationship between the host and bacteria in the nasal mucosa.


Assuntos
COVID-19 , Cavidade Nasal , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Mucosa Nasal , Vacinação , Imunidade nas Mucosas , RNA Mensageiro , Imunoglobulina A , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
12.
iScience ; 26(7): 107208, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37448563

RESUMO

SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes.

13.
One Health ; 17: 100588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37359748

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.

14.
EBioMedicine ; 93: 104677, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352827

RESUMO

BACKGROUND: Like its predecessors in the XBB family, XBB.1.5 is highly immune evasive from therapeutic monoclonal antibodies and neutralizing antibodies generated by vaccination and/or infection. However, there is a lack of in vivo data on XBB.1.5 in animal models such as Syrian hamsters. METHODS: Syrian hamsters (females) were used to examine airborne transmission along with virus replication of XBB.1.5 in naïve animals and human ACE2 hamsters with pre-existing immunity from a previous infection with Omicron BA.1. Assays were performed to determine neutralizing antibody responses, and virus titers were determined by standard plaque assays. FINDINGS: Unlike earlier Omicron subvariants, such as BA.1 and BA.2, XBB.1.5 transmitted more efficiently in the hamster model. In addition, XBB.1.5 partially escaped BA.1-immunity from a previous infection with XBB.1.5 replicating in the nasal turbinate tissues and to a lesser extend in the lung tissues of previously infected hamsters. INTERPRETATION: Our in vivo data showing better airborne transmissibility of the Omicron subvariant XBB.1.5 than its predecessor, BA.2, in Syrian hamsters will allow researchers to further investigate amino acid substitutions that give XBB.1.5 a fitness advantage over BA.2 in transmission, data that may be important in studies of SARS-CoV-2 transmission in humans. FUNDING: This research is supported by grants from the Center for Research on Influenza Pathogenesis and Transmission (CRIPT; 75N93021C00014), funded by the National Institute of Allergy and Infectious Diseases and by a Research Program on Emerging and Reemerging Infectious Diseases (JP21fk0108552 and JP21fk0108615), a Project Promoting Support for Drug Discovery (JP21nf0101632), the Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125002), and The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA) grant (JP223fa627001) from the Japan Agency for Medical Research and Development.


Assuntos
COVID-19 , Reinfecção , Animais , Feminino , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2 , Anticorpos Neutralizantes , Proteínas Adaptadoras de Transdução de Sinal
16.
Heliyon ; 9(3): e13795, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915486

RESUMO

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.

18.
Nat Commun ; 14(1): 1620, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959194

RESUMO

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Bioensaio , Replicação do DNA , Índia , Mesocricetus
20.
Viruses ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851749

RESUMO

The influenza A(H1N1)pdm09 virus that emerged in 2009 causes seasonal epidemic worldwide. The virus acquired several amino acid substitutions that were responsible for antigenic drift until the 2018-2019 influenza season. Viruses possessing mutations in the NA and PA proteins that cause reduced susceptibility to NA inhibitors and baloxavir marboxil, respectively, have been detected after antiviral treatment, albeit infrequently. Here, we analyzed HA, NA, and PA sequences derived from A(H1N1)pdm09 viruses that were isolated during the 2018-2019 and 2019-2020 influenza seasons in Japan. We found that A(H1N1)pdm09 viruses possessing the D187A and Q189E substitutions in HA emerged and dominated during the 2019-2020 season; these substitutions in the antigenic site Sb, a high potency neutralizing antibody-eliciting site for humans, changed the antigenicity of A(H1N1)pdm09 viruses. Furthermore, we found that isolates possessing the N156K substitution, which was predicted to affect the antigenicity of A(H1N1)pdm09 virus at the laboratory level, were detected at a frequency of 1.0% in the 2018-2019 season but 10.1% in the 2019-2020 season. These findings indicate that two kinds of antigenically drifted viruses-N156K and D187A/Q189E viruses-co-circulated during the 2019-2020 influenza season in Japan.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Estações do Ano , Japão/epidemiologia , Influenza Humana/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...