Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
PLoS Genet ; 19(10): e1010986, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812641

RESUMO

Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina/genética , Cromossomos/metabolismo , Plasmídeos/genética , Cromatina/genética , Cromatina/metabolismo , Mamíferos/genética
3.
Neuromolecular Med ; 24(1): 41-49, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677796

RESUMO

Malignant brain tumors are among the most intractable cancers, including malignancies such as glioblastoma, diffuse midline glioma, medulloblastoma, and ependymoma. Unfortunately, treatment options for these brain tumors have been inadequate and complex, leading to poor prognoses and creating a need for new treatment modalities. Aberrant epigenetics define these types of tumors, with underlying changes in DNA methylation, histone modifications, chromatin structure and noncoding RNAs. Epigenetic-targeted therapies are an alternative that have the potential to reverse the epigenetic deregulation underpinning brain malignancies. Various drugs targeting epigenetic regulators have shown promise in preclinical and clinical testing. In this review, we highlight some of the recent emerging epigenetic targeted therapies for brain tumors being evaluated in the discovery phase and in clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Metilação de DNA , Epigênese Genética , Epigenômica , Glioma/tratamento farmacológico , Glioma/genética , Humanos
4.
Front Immunol ; 12: 713704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447380

RESUMO

Elevated levels of circulating immune complexes are associated with autoimmunity and with worse prognoses in cancer. Here, we examined the effects of well-defined, soluble immune complexes (ICs) on human peripheral T cells. We demonstrate that IgG-ICs inhibit the proliferation and differentiation of a subset of naïve T cells but stimulate the division of another naïve-like T cell subset. Phenotypic analysis by multi-parameter flow cytometry and RNA-Seq were used to characterize the inhibited and stimulated T cells revealing that the inhibited subset presented immature features resembling those of recent thymic emigrants and non-activated naïve T cells, whereas the stimulated subset exhibited transcriptional features indicative of a more differentiated, early memory progenitor with a naïve-like phenotype. Furthermore, we show that while IgG1-ICs do not profoundly inhibit the proliferation of memory T cells, IgG1-ICs suppress the production of granzyme-ß and perforin in cytotoxic memory T cells. Our findings reveal how ICs can link humoral immunity and T cell function.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Comunicação Celular/imunologia , Imunoglobulina G/imunologia , Imunomodulação , Subpopulações de Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Autoimunidade , Biomarcadores , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Curr Genet ; 66(5): 939-944, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32537667

RESUMO

The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation and eviction activities, which likely have varying contributions at distinct sets of genes across the genome.


Assuntos
Genoma Fúngico , Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Variação Genética , Histonas/química , Nucleossomos/genética , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 48(1): 157-170, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722407

RESUMO

Transcription start sites (TSS) in eukaryotes are characterized by a nucleosome-depleted region (NDR), which appears to be flanked upstream and downstream by strongly positioned nucleosomes incorporating the histone variant H2A.Z. H2A.Z associates with both active and repressed TSS and is important for priming genes for rapid transcriptional activation. However, the determinants of H2A.Z occupancy at specific nucleosomes and its relationship to transcription initiation remain unclear. To further elucidate the specificity of H2A.Z, we determined its genomic localization at single nucleosome resolution, as well as the localization of its chromatin remodelers Swr1 and Ino80. By analyzing H2A.Z occupancy in conjunction with RNA expression data that captures promoter-derived antisense initiation, we find that H2A.Z's bimodal incorporation on either side of the NDR is not a general feature of TSS, but is specifically a marker for bidirectional transcription, such that the upstream flanking -1 H2A.Z-containing nucleosome is more appropriately considered as a +1 H2A.Z nucleosome for antisense transcription. The localization of H2A.Z almost exclusively at the +1 nucleosome suggests that a transcription-initiation dependent process could contribute to its specific incorporation.


Assuntos
Adenosina Trifosfatases/genética , Histonas/genética , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Iniciação da Transcrição Genética , Adenosina Trifosfatases/metabolismo , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição
7.
Mol Cancer Res ; 18(1): 68-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624087

RESUMO

13-Cis-retinoic acid (RA) is typically used in postremission maintenance therapy in patients with neuroblastoma. However, side effects and recurrence are often observed. We investigated the use of miRNAs as a strategy to replace RA as promoters of differentiation. miR-124 was identified as the top candidate in a functional screen. Genomic target analysis indicated that repression of a network of transcription factors (TF) could be mediating most of miR-124's effect in driving differentiation. To advance miR-124 mimic use in therapy and better define its mechanism of action, a high-throughput siRNA morphologic screen focusing on its TF targets was conducted and ELF4 was identified as a leading candidate for miR-124 repression. By altering its expression levels, we showed that ELF4 maintains neuroblastoma in an undifferentiated state and promotes proliferation. Moreover, ELF4 transgenic expression was able to counteract the neurogenic effect of miR-124 in neuroblastoma cells. With RNA sequencing, we established the main role of ELF4 to be regulation of cell-cycle progression, specifically through the DREAM complex. Interestingly, several cell-cycle genes activated by ELF4 are repressed by miR-124, suggesting that they might form a TF-miRNA regulatory loop. Finally, we showed that high ELF4 expression is often observed in neuroblastomas and is associated with poor survival. IMPLICATIONS: miR-124 induces neuroblastoma differentiation partially through the downregulation of TF ELF4, which drives neuroblastoma proliferation and its undifferentiated phenotype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Taxa de Sobrevida , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção
8.
PLoS One ; 14(9): e0222435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513636

RESUMO

Polycomb repressive complex 2 (PRC2) is a chromatin binding complex that represses gene expression by methylating histone H3 at K27 to establish repressed chromatin domains. PRC2 can either regulate genes directly through the methyltransferase activity of its component EZH2 or indirectly by regulating other gene regulators. Gene expression analysis of glioblastoma (GBM) cells lacking EZH2 showed that PRC2 regulates hundreds of interferon-stimulated genes (ISGs). We found that PRC2 directly represses several ISGs and also indirectly activates a distinct set of ISGs. Assessment of EZH2 binding proximal to miRNAs showed that PRC2 directly represses miRNAs encoded in the chromosome 14 imprinted DLK1-DIO3 locus. We found that repression of this locus by PRC2 occurs in immortalized GBM-derived cell lines as well as in primary bulk tumors from GBM and anaplastic astrocytoma patients. Through repression of these miRNAs and several other miRNAs, PRC2 activates a set of ISGs that are targeted by these miRNAs. This PRC2-miRNA-ISG network is likely to be important in regulating gene expression programs in GBM.


Assuntos
Glioblastoma/metabolismo , Fatores Reguladores de Interferon/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação da Expressão Gênica/genética , Glioblastoma/genética , Histonas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , MicroRNAs/genética , Complexo Repressor Polycomb 2/genética
9.
Genome Res ; 29(2): 184-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30651280

RESUMO

Gene expression can be regulated at multiple levels, but it is not known if and how there is broad coordination between regulation at the transcriptional and post-transcriptional levels. Transcription factors and chromatin regulate gene expression transcriptionally, whereas microRNAs (miRNAs) are small regulatory RNAs that function post-transcriptionally. Systematically identifying the post-transcriptional targets of miRNAs and the mechanism of transcriptional regulation of the same targets can shed light on regulatory networks connecting transcriptional and post-transcriptional control. We used individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) for the RNA-induced silencing complex (RISC) component AGO2 and global miRNA depletion to identify genes directly targeted by miRNAs. We found that Polycomb repressive complex 2 (PRC2) and its associated histone mark, H3K27me3, is enriched at hundreds of miRNA-repressed genes. We show that these genes are directly repressed by PRC2 and constitute a significant proportion of direct PRC2 targets. For just over half of the genes corepressed by PRC2 and miRNAs, PRC2 promotes their miRNA-mediated repression by increasing expression of the miRNAs that are likely to target them. miRNAs also repress the remainder of the PRC2 target genes, but independently of PRC2. Thus, miRNAs post-transcriptionally reinforce silencing of PRC2-repressed genes that are inefficiently repressed at the level of chromatin, by either forming a feed-forward regulatory network with PRC2 or repressing them independently of PRC2.


Assuntos
Repressão Epigenética , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Código das Histonas , Humanos
10.
PeerJ ; 6: e5362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083469

RESUMO

To detect functional somatic mutations in tumor samples, whole-exome sequencing (WES) is often used for its reliability and relative low cost. RNA-seq, while generally used to measure gene expression, can potentially also be used for identification of somatic mutations. However there has been little systematic evaluation of the utility of RNA-seq for identifying somatic mutations. Here, we develop and evaluate a pipeline for processing RNA-seq data from glioblastoma multiforme (GBM) tumors in order to identify somatic mutations. The pipeline entails the use of the STAR aligner 2-pass procedure jointly with MuTect2 from genome analysis toolkit (GATK) to detect somatic variants. Variants identified from RNA-seq data were evaluated by comparison against the COSMIC and dbSNP databases, and also compared to somatic variants identified by exome sequencing. We also estimated the putative functional impact of coding variants in the most frequently mutated genes in GBM. Interestingly, variants identified by RNA-seq alone showed better representation of GBM-related mutations cataloged by COSMIC. RNA-seq-only data substantially outperformed the ability of WES to reveal potentially new somatic mutations in known GBM-related pathways, and allowed us to build a high-quality set of somatic mutations common to exome and RNA-seq calls. Using RNA-seq data in parallel with WES data to detect somatic mutations in cancer genomes can thus broaden the scope of discoveries and lend additional support to somatic variants identified by exome sequencing alone.

11.
RNA ; 24(9): 1266-1274, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29950518

RESUMO

The quality of RNA sequencing data relies on specific priming by the primer used for reverse transcription (RT-primer). Nonspecific annealing of the RT-primer to the RNA template can generate reads with incorrect cDNA ends and can cause misinterpretation of data (RT mispriming). This kind of artifact in RNA-seq based technologies is underappreciated and currently no adequate tools exist to computationally remove them from published data sets. We show that mispriming can occur with as little as two bases of complementarity at the 3' end of the primer followed by intermittent regions of complementarity. We also provide a computational pipeline that identifies cDNA reads produced from RT mispriming, allowing users to filter them out from any aligned data set. Using this analysis pipeline, we identify thousands of mispriming events in a dozen published data sets from diverse technologies including short RNA-seq, total/mRNA-seq, HITS-CLIP, and GRO-seq. We further show how RT mispriming can lead to misinterpretation of data. In addition to providing a solution to computationally remove RT-misprimed reads, we also propose an experimental solution to completely avoid RT-mispriming by performing RNA-seq using thermostable group II intron derived reverse transcriptase (TGIRT-seq).


Assuntos
Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Análise de Sequência de RNA/normas , Artefatos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Sondas RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Reversa , Análise de Sequência de RNA/métodos
12.
Cancer Res ; 78(10): 2463-2474, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549165

RESUMO

Glioblastoma multiforme (GBM) can be clustered by gene expression into four main subtypes associated with prognosis and survival, but enhancers and other gene-regulatory elements have not yet been identified in primary tumors. Here, we profiled six histone modifications and CTCF binding as well as gene expression in primary gliomas and identified chromatin states that define distinct regulatory elements across the tumor genome. Enhancers in mesenchymal and classical tumor subtypes drove gene expression associated with cell migration and invasion, whereas enhancers in proneural tumors controlled genes associated with a less aggressive phenotype in GBM. We identified bivalent domains marked by activating and repressive chromatin modifications. Interestingly, the gene interaction network from common (subtype-independent) bivalent domains was highly enriched for homeobox genes and transcription factors and dominated by SHH and Wnt signaling pathways. This subtype-independent signature of early neural development may be indicative of poised dedifferentiation capacity in glioblastoma and could provide potential targets for therapy.Significance: Enhancers and bivalent domains in glioblastoma are regulated in a subtype-specific manner that resembles gene regulation in glioma stem cells. Cancer Res; 78(10); 2463-74. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Cromatina/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Domínios Proteicos/genética , Sítios de Ligação/fisiologia , Fator de Ligação a CCCTC/metabolismo , Desdiferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Código das Histonas/genética , Humanos , Metilação
13.
Mol Cell Biol ; 38(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038163

RESUMO

Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.

16.
BMC Genomics ; 18(1): 538, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716006

RESUMO

BACKGROUND: Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. RESULTS: Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. CONCLUSIONS: Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histonas/metabolismo , Acetilação/efeitos dos fármacos , Arabidopsis/metabolismo , Genômica , Histonas/química , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
17.
Nucleic Acids Res ; 45(12): 7180-7190, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28460001

RESUMO

Chd1 (Chromodomain Helicase DNA Binding Protein 1) is a conserved ATP-dependent chromatin remodeler that maintains the nucleosomal structure of chromatin, but the determinants of its specificity and its impact on gene expression are not well defined. To identify the determinants of Chd1 binding specificity in the yeast genome, we investigated Chd1 occupancy in mutants of several candidate factors. We found that several components of the PAF1 transcription elongation complex contribute to Chd1 recruitment to highly transcribed genes and identified Spt4 as a factor that appears to negatively modulate Chd1 binding to chromatin. We discovered that CHD1 loss alters H3K4me3 and H3K36me3 patterns throughout the yeast genome. Interestingly, the aberrant histone H3 methylation patterns were predominantly observed within 1 kb from the transcription start site, where both histone H3 methylation marks co-occur. A reciprocal change between the two marks was obvious in the absence of Chd1, suggesting a role for CHD1 in establishing or maintaining the boundaries of these largely mutually exclusive histone marks. Strikingly, intron-containing genes were most susceptible to CHD1 loss and exhibited a high degree of histone H3 methylation changes. Intron retention was significantly lower in the absence of CHD1, suggesting that CHD1 function as a chromatin remodeler could indirectly affect RNA splicing.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Éxons , Histonas/metabolismo , Íntrons , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
18.
J Stem Cell Ther Transplant ; 1(1): 52-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31080945

RESUMO

Research into regulation of the differentiation of stem cells is critical to understanding early developmental decisions and later development growth. The transcription factor ARID3A previously was shown to be critical for trophectoderm and hematopoetic development. Expression of ARID3A increases during embryonic differentiation, but the underlying reason remained unclear. Here we show that Arid3a null embryonic stem (ES) cells maintain an undifferentiated gene expression pattern and form teratomas in immune-compromised mice. However, Arid3a null ES cells differentiated in vitro into embryoid bodies (EBs) significantly faster than control ES cells, and the majority forming large cystic embryoid EBs. Analysis of gene expression during this transition indicated that Arid3a nulls differentiated spontaneously into mesoderm and neuroectoderm lineages. While young ARID3A-deficient mice showed no gross tissue morphology, proliferative and structural abnormalities were observed in the kidneys of older null mice. Together these data suggest that ARID3A is not only required hematopoiesis, but is critical for early mesoderm differentiation.

19.
Science ; 352(6293): 1590-3, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339990

RESUMO

Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3'- 5' exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription-polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.


Assuntos
Evolução Molecular , Modelos Moleculares , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/classificação , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , DNA Complementar/biossíntese , Evolução Molecular Direcionada , Exonucleases/química , Filogenia , Estrutura Terciária de Proteína , Pyrococcus furiosus/enzimologia , RNA/química , RNA/genética , DNA Polimerase Dirigida por RNA/genética , Moldes Genéticos , Thermococcus/enzimologia
20.
Trends Genet ; 32(6): 322-333, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27066865

RESUMO

A new paradigm has emerged in recent years characterizing transcription initiation as a bidirectional process encompassing a larger proportion of the genome than previously thought. Past concepts of coding genes thinly scattered among a vast background of transcriptionally inert noncoding DNA have been abandoned. A richer picture has taken shape, integrating transcription of coding genes, enhancer RNAs (eRNAs), and various other noncoding transcriptional events. In this review we give an overview of recent studies detailing the mechanisms of RNA polymerase II (RNA Pol II)-based transcriptional initiation and discuss the ways in which transcriptional direction is established as well as its functional implications.


Assuntos
Elementos Facilitadores Genéticos , RNA Polimerase II/genética , RNA/genética , Transcrição Gênica , Cromatina/genética , Humanos , Regiões Promotoras Genéticas , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...