Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 12(11): 1656-1678, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206086

RESUMO

Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 µM), which was higher than that of MnCl2 (LC50∼ 27 µM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 µM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.


Assuntos
Cerebelo/patologia , Manganês/toxicidade , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Neurotoxinas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Cobre/metabolismo , Grânulos Citoplasmáticos/metabolismo , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Praguicidas/toxicidade , Potássio/metabolismo , Proteoma/metabolismo , Proteômica
2.
J Neurochem ; 150(3): 312-329, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30734931

RESUMO

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Neurônios/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Doença de Parkinson/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
3.
Cell Death Dis ; 10(2): 135, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755590

RESUMO

The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Morte Celular/genética , Estresse do Retículo Endoplasmático/genética , Proteína Desglicase DJ-1/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima , Fator 4 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Fibroblastos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , RNA Mensageiro/metabolismo
4.
J Neurosci ; 37(28): 6729-6740, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607169

RESUMO

Dysregulation of cell cycle machinery is implicated in a number of neuronal death contexts, including stroke. Increasing evidence suggests that cyclin-dependent kinases (Cdks) are inappropriately activated in mature neurons under ischemic stress conditions. We previously demonstrated a functional role for the cyclin D1/Cdk4/pRb (retinoblastoma tumor suppressor protein) pathway in delayed neuronal death induced by ischemia. However, the molecular signals leading to cyclin D/Cdk4/pRb activation following ischemic insult are presently not clear. Here, we investigate the cell division cycle 25 (Cdc25) dual-specificity phosphatases as potential upstream regulators of ischemic neuronal death and Cdk4 activation. We show that a pharmacologic inhibitor of Cdc25 family members (A, B, and C) protects mouse primary neurons from hypoxia-induced delayed death. The major contributor to the death process appears to be Cdc25A. shRNA-mediated knockdown of Cdc25A protects neurons in a delayed model of hypoxia-induced death in vitro Similar results were observed in vivo following global ischemia in the rat. In contrast, neurons singly or doubly deficient for Cdc25B/C were not significantly protective. We show that Cdc25A activity, but not level, is upregulated in vitro following hypoxia and global ischemic insult in vivo Finally, we show that shRNA targeting Cdc25A blocks Ser795 pRb phosphorylation. Overall, our results indicate a role for Cdc25A in delayed neuronal death mediated by ischemia.SIGNIFICANCE STATEMENT A major challenge in stroke is finding an effective neuroprotective strategy to treat cerebral ischemic injury. Cdc25 family member A (Cdc25A) is a phosphatase normally activated during cell division in proliferating cells. We found that Cdc25A is activated in neurons undergoing ischemic stress mediated by hypoxia in vitro and global cerebral ischemia in rats in vivo We show that pharmacologic or genetic inhibition of Cdc25A activity protects neurons from delayed death in vitro and in vivo Downregulation of Cdc25A led to reduction in retinoblastoma tumor suppressor protein (pRb) phosphorylation. An increase in pRb phosphorylation has been previously linked to ischemic neuronal death. Our results identify Cdc25A as a potential target for neuroprotectant strategy for the treatment of delayed ischemic neuronal death.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfatases cdc25/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
5.
J Biol Chem ; 289(26): 18202-13, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828495

RESUMO

Inappropriate activation of cell cycle proteins, in particular cyclin D/Cdk4, is implicated in neuronal death induced by various pathologic stresses, including DNA damage and ischemia. Key targets of Cdk4 in proliferating cells include members of the E2F transcription factors, which mediate the expression of cell cycle proteins as well as death-inducing genes. However, the presence of multiple E2F family members complicates our understanding of their role in death. We focused on whether E2F4, an E2F member believed to exhibit crucial control over the maintenance of a differentiated state of neurons, may be critical in ischemic neuronal death. We observed that, in contrast to E2F1 and E2F3, which sensitize to death, E2F4 plays a crucial protective role in neuronal death evoked by DNA damage, hypoxia, and global ischemic insult both in vitro and in vivo. E2F4 occupies promoter regions of proapoptotic factors, such as B-Myb, under basal conditions. Following stress exposure, E2F4-p130 complexes are lost rapidly along with the presence of E2F4 at E2F-containing B-Myb promoter sites. In contrast, the presence of E2F1 at B-Myb sites increases with stress. Furthermore, B-Myb and C-Myb expression increases with ischemic insult. Taken together, we propose a model by which E2F4 plays a protective role in neurons from ischemic insult by forming repressive complexes that prevent prodeath factors such as Myb from being expressed.


Assuntos
Fator de Transcrição E2F4/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/citologia , Proteína p130 Retinoblastoma-Like/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Fator de Transcrição E2F4/genética , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Camundongos Knockout , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos Wistar , Proteína p130 Retinoblastoma-Like/genética , Transativadores/genética , Transativadores/metabolismo
6.
J Neurosci ; 30(11): 3973-82, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20237268

RESUMO

Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Quinase 4 Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Ativação Enzimática/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Neurônios/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Células PC12 , Interferência de RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Transativadores/antagonistas & inibidores , Transativadores/genética , Fatores de Transcrição
7.
J Neurochem ; 105(3): 703-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18205749

RESUMO

We previously reported that delayed administration of the general cyclin-dependent kinase inhibitor flavopiridol following global ischemia provided transient neuroprotection and improved behavioral performance. However, it failed to provide longer term protection. In the present study, we investigate the ability of delayed flavopiridol in combination with delayed minocycline, another neuroprotectant to provide sustained protection following global ischemia. We report that a delayed combinatorial treatment of flavopiridol and minocycline provides synergistic protection both 2 and 10 weeks following ischemia. However, protected neurons in the hippocampal CA1 are synaptically impaired as assessed by electrophysio logical field potential recordings. This is likely because of the presence of degenerated processes in the CA1 even with combinatorial therapy. This indicates that while we have addressed one important pre-clinical parameter by dramatically improving long-term neuronal survival with delayed combinatorial therapy, the issue of synaptic preservation of protected neurons still exists. These results also highlight the important observation that protection does not always lead to proper function.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Flavonoides/farmacologia , Minociclina/farmacologia , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Antibacterianos/farmacologia , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Dendritos/efeitos dos fármacos , Dendritos/patologia , Modelos Animais de Doenças , Esquema de Medicação , Sinergismo Farmacológico , Quimioterapia Combinada , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurônios/patologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 102(39): 14080-5, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16166266

RESUMO

The mechanisms involving neuronal death after ischemic/hypoxic insult are complex, involving both rapid (excitotoxic) and delayed (apoptotic-like) processes. Recent evidence suggests that cell cycle regulators such as cyclin-dependent kinases are abnormally activated in neuropathological conditions, including stroke. However, the function of this activation is unclear. Here, we provide evidence that inhibition of the cell cycle regulator, Cdk4, and its activator, cyclinD1, plays critical roles in the delayed death component of ischemic/hypoxic stress by regulating the tumor suppressor retinoblastoma protein. In contrast, the excitotoxic component of ischemia/hypoxia is predominately regulated by Cdk5 and its activator p35, components of a cyclin-dependent kinase complex associated with neuronal development. Hence, our data both characterize the functional significance of the cell cycle Cdk4 and neuronal Cdk5 signals as well as define the pathways and circumstances by which they act to control ischemic/hypoxic damage.


Assuntos
Hipóxia-Isquemia Encefálica/enzimologia , Neurônios/patologia , Animais , Morte Celular , Ciclina D1/antagonistas & inibidores , Ciclina D1/genética , Ciclina D1/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Fosforilação , Ratos , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia
9.
J Neurosci ; 24(12): 2963-73, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15044535

RESUMO

Previous studies have shown that DNA damage-evoked death of primary cortical neurons occurs in a p53 and cyclin-dependent kinase-dependent (CDK) manner. The manner by which these signals modulate death is unclear. Nuclear factor-kappaB (NF-kappaB) is a group of transcription factors that potentially interact with these pathways. Presently, we show that NF-kappaB is activated shortly after induction of DNA damage in a manner independent of the classic IkappaB kinase (IKK) activation pathway, CDKs, ATM, and p53. Acute inhibition of NF-kappaB via expression of a stable IkappaB mutant, downregulation of the p65 NF-kappaB subunit by RNA interference (RNAi), or pharmacological NF-kappaB inhibitors significantly protected against DNA damage-induced neuronal death. NF-kappaB inhibition also reduced p53 transcripts and p53 activity as measured by the p53-inducible messages, Puma and Noxa, implicating the p53 tumor suppressor in the mechanism of NF-kappaB-mediated neuronal death. Importantly, p53 expression still induces death in the presence of NF-kappaB inhibition, indicating that p53 acts downstream of NF-kappaB. Interestingly, neurons cultured from p65 or p50 NF-kappaB-deficient mice were not resistant to death and did not show diminished p53 activity, suggesting compensatory processes attributable to germline deficiencies, which allow p53 activation still to occur. In contrast to acute NF-kappaB inhibition, prolonged NF-kappaB inhibition caused neuronal death in the absence of DNA damage. These results uniquely define a signaling paradigm by which NF-kappaB serves both an acute p53-dependent pro-apoptotic function in the presence of DNA damage and an anti-apoptotic function in untreated normal neurons.


Assuntos
Dano ao DNA/fisiologia , NF-kappa B/metabolismo , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Camptotecina/farmacologia , Proteínas de Ciclo Celular , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Subunidade p50 de NF-kappa B , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Inibidores da Topoisomerase I , Fator de Transcrição RelA , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA