Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38257739

RESUMO

The cleavage of viral surface proteins by furin is associated with some viruses' high virulence and infectivity. The human papillomavirus (HPV) requires the proteolytic processing of its capsid proteins for activation before entry. Variability in reactivity with furin and other proprotein convertases (PCs) among HPV types was investigated. HPV16, the most prevalent and carcinogenic HPV type, reacted with PCs with the broadest selectivity compared to other types in reactions of pseudoviral particles with the recombinant PCs, furin, PC4, PC5, PACE4, and PC7. Proteolytic preactivation was assessed using a well-established entry assay into PC-inhibited cells based on the green fluorescent protein as a reporter. The inhibition of the target cell PC activity with serpin-based PC-selective inhibitors also showed a diversity of PC selectivity among HPV types. HPV16 reacted with furin at the highest rate compared to the other types in time-dependent preactivation reactions and produced the highest entry values standardized to pseudoviral particle concentration. The predominant expression of furin in keratinocytes and the high reactivity of HPV16 with this enzyme highlight the importance of selectively targeting furin as a potential antiviral therapeutic approach.


Assuntos
Infecções por Papillomavirus , Pró-Proteína Convertases , Humanos , Furina , Papillomavirus Humano , Papillomavirus Humano 16/genética
2.
Biochemistry ; 60(15): 1201-1213, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33822598

RESUMO

Antithrombin is unique among serpin family protein protease inhibitors with respect to the major reactive center loop (RCL) and core conformational changes that mediate allosteric activation of its anticoagulant function by heparin. A critical role for expulsion of the RCL hinge from a native stabilizing interaction with the hydrophobic core in the activation mechanism has been proposed from reports that antithrombin variants that block this change through engineered disulfide bonds block activation. However, the sufficiency of core conformational changes for activation without expulsion of the RCL from the core is suggested by variants that are activated without the need for heparin and retain the native RCL-core interaction. To resolve these apparently conflicting findings, we engineered variants in which disulfides designed to block the RCL conformational change were combined with constitutively activating mutations. Our findings demonstrate that while a reversible constitutive activation can be engineered in variants that retain the native RCL-core interaction, engineered disulfides that lock the RCL native conformation can also block heparin allosteric activation. Such findings support a three-state allosteric activation model in which constitutive activating mutations stabilize an intermediate-activated state wherein core conformational changes and a major activation have occurred without the release of the RCL from the core but with a necessary repositioning of the RCL to allow productive engagement with an exosite. Rigid disulfide bonds that lock the RCL native conformation block heparin activation by preventing both RCL repositioning in the intermediate-activated state and the release of the RCL from the core in the fully activated state.


Assuntos
Antitrombinas/química , Antitrombinas/metabolismo , Heparina/metabolismo , Regulação Alostérica , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica
3.
Viruses ; 11(9)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505793

RESUMO

A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.


Assuntos
Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Viroses/enzimologia , Internalização do Vírus , Animais , Furina/química , Furina/genética , Interações Hospedeiro-Patógeno , Humanos , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , Viroses/genética , Viroses/virologia , Fenômenos Fisiológicos Virais , Vírus/genética
4.
Biochemistry ; 58(12): 1679-1688, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30848586

RESUMO

The molecular determinants of substrate specificity and selectivity in the proprotein convertase (PC) family of proteases are poorly understood. Here we demonstrate that the natural serpin family inhibitor, serpin B8, is a specific and selective inhibitor of furin relative to the other PCs of the constitutive protein secretion pathway, PC4, PC5, PACE4, and PC7 (PC4-PC7, respectively), and identify reactive-site (P6-P5' residues) and exosite elements of the serpin that contribute to this specificity and selectivity through studies of chimeras of serpin B8 and α1PDX, an engineered serpin inhibitor of furin. Kinetic studies revealed that the specificity and selectivity of the serpin chimeras for inhibiting PCs were determined by P6-P5 and P3-P2 residue-dependent recognition of the P4Arg-X-X-P1Arg PC consensus sequence and exosite-dependent recognition of the reactive loop P2' residue of the chimeras by the PCs. Both productive and nonproductive binding of the chimeras to PC4-PC7 but not to furin contributed to a decreased specificity for inhibiting PC4-PC7 and an increased selectivity for inhibiting furin. Molecular dynamics simulations suggested that nonproductive binding of the chimeras to the PCs was correlated with a greater conformational variability of the catalytic sites of PC4-PC7 relative to that of furin. Our findings suggest a new approach for designing selective inhibitors of PCs using α1PDX as a scaffold, as evidenced by our ability to engineer highly specific and selective inhibitors of furin and PC4-PC7.


Assuntos
Furina/química , Serpinas/química , alfa 1-Antitripsina/química , Domínio Catalítico , Ensaios Enzimáticos , Furina/antagonistas & inibidores , Humanos , Ligantes , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Serpinas/genética , Especificidade por Substrato , alfa 1-Antitripsina/genética
5.
Biochemistry ; 57(15): 2211-2226, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29561141

RESUMO

Heparin allosterically activates the anticoagulant serpin, antithrombin, by binding through a sequence-specific pentasaccharide and inducing activating conformational changes in the protein. Three basic residues of antithrombin, Lys114, Lys125, and Arg129, have been shown to be hotspots for binding the pentasaccharide, but the molecular basis for such hotspot binding has been unclear. To determine whether this results from cooperative interactions, we analyzed the effects of single, double, and triple mutations of the hotspot residues on pentasaccharide binding and activation of antithrombin. Double-mutant cycles revealed that the contribution of each residue to pentasaccharide binding energy was progressively reduced when one or both of the other residues were mutated, indicating strong coupling between each pair of residues that was dependent on the third residue and reflective of the three residues acting as a cooperative unit. Rapid kinetic studies showed that the hotspot residue mutations progressively abrogated the ability of the pentasaccharide to bind productively to native antithrombin and to conformationally activate the serpin by engaging the hotspot residues in an induced-fit interaction. Examination of the antithrombin-pentasaccharide complex structure revealed that the hotspot residues form two adjoining binding pockets for critical sulfates of the pentasaccharide that structurally link these residues. Together, these findings demonstrate that cooperative interactions of Lys114, Lys125, and Arg129 are critical for the productive induced-fit binding of the heparin pentasaccharide to antithrombin that allosterically activates the anticoagulant function of the serpin.


Assuntos
Antitrombinas/química , Heparina/química , Regulação Alostérica , Substituição de Aminoácidos , Antitrombinas/metabolismo , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto
6.
J Biol Chem ; 292(40): 16513-16520, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28743742

RESUMO

Antithrombin mainly inhibits factor Xa and thrombin. The reactive center loop (RCL) is crucial for its interactions with its protease targets and is fully inserted into the A-sheet after its cleavage, causing translocation of the covalently linked protease to the opposite end of the A-sheet. Antithrombin variants with altered RCL hinge residues behave as substrates rather than inhibitors, resulting in stoichiometries of inhibition greater than one. Other antithrombin residues have been suggested to interfere with RCL insertion or the stability of the antithrombin-protease complex, but available crystal structures or mutagenesis studies have failed to identify such residues. Here, we characterized two mutations, S365L and I207T, present in individuals with type II antithrombin deficiency and identified a new antithrombin functional domain. S365L did not form stable complexes with thrombin or factor Xa, and the I207T/I207A variants inhibited both proteases with elevated stoichiometries of inhibition. Close proximity of Ile-207 and Ser-365 to the inserted RCL suggested that the preferred reaction of these mutants as protease substrates reflects an effect on the rate of the RCL insertion and protease translocation. However, both residues lie within the final docking site for the protease in the antithrombin-protease complex, supporting the idea that the enhanced substrate reactions may result from an increased dissociation of the final complexes. Our findings demonstrate that the distal end of the antithrombin A-sheet is crucial for the last steps of protease inhibition either by affecting the rate of RCL insertion or through critical interactions with proteases at the end of the A-sheet.


Assuntos
Proteínas Antitrombina/química , Transtornos Herdados da Coagulação Sanguínea , Fator Xa/química , Simulação de Acoplamento Molecular , Trombina/química , Substituição de Aminoácidos , Proteínas Antitrombina/genética , Proteínas Antitrombina/metabolismo , Domínio Catalítico , Fator Xa/genética , Fator Xa/metabolismo , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Secundária de Proteína , Trombina/genética , Trombina/metabolismo
7.
J Biol Chem ; 290(47): 28020-28036, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26359493

RESUMO

Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.


Assuntos
Antitrombinas/metabolismo , Heparina/metabolismo , Regulação Alostérica , Antitrombinas/química , Cinética , Mutação , Peptídeo Hidrolases/metabolismo , Ligação Proteica
8.
J Biol Chem ; 289(49): 34049-64, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25331949

RESUMO

Heparin allosterically activates antithrombin as an inhibitor of factors Xa and IXa by enhancing the initial Michaelis complex interaction of inhibitor with protease through exosites. Here, we investigate the mechanism of this enhancement by analyzing the effects of alanine mutations of six putative antithrombin exosite residues and three complementary protease exosite residues on antithrombin reactivity with these proteases in unactivated and heparin-activated states. Mutations of antithrombin Tyr(253) and His(319) exosite residues produced massive 10-200-fold losses in reactivity with factors Xa and IXa in both unactivated and heparin-activated states, indicating that these residues made critical attractive interactions with protease independent of heparin activation. By contrast, mutations of Asn(233), Arg(235), Glu(237), and Glu(255) exosite residues showed that these residues made both repulsive and attractive interactions with protease that depended on the activation state and whether the critical Tyr(253)/His(319) residues were mutated. Mutation of factor Xa Arg(143), Lys(148), and Arg(150) residues that interact with the exosite in the x-ray structure of the Michaelis complex confirmed the importance of all residues for heparin-activated antithrombin reactivity and Arg(150) for native serpin reactivity. These results demonstrate that the exosite is a key determinant of antithrombin reactivity with factors Xa and IXa in the native as well as the heparin-activated state and support a new model of allosteric activation we recently proposed in which a balance between attractive and repulsive exosite interactions in the native state is shifted to favor the attractive interactions in the activated state through core conformational changes induced by heparin binding.


Assuntos
Aminoácidos/química , Antitrombinas/química , Fator IXa/química , Inibidores do Fator Xa/química , Fator Xa/química , Heparina/química , Regulação Alostérica , Aminoácidos/metabolismo , Antitrombinas/metabolismo , Baculoviridae/genética , Sítios de Ligação , Fator IXa/genética , Fator IXa/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Inibidores do Fator Xa/metabolismo , Expressão Gênica , Heparina/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
9.
J Biol Chem ; 288(44): 32020-35, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047901

RESUMO

Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.


Assuntos
Complexos Multiproteicos/química , Tripsina/química , alfa 1-Antitripsina/química , Animais , Domínio Catalítico , Bovinos , Humanos , Cinética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Tripsina/metabolismo , alfa 1-Antitripsina/metabolismo
10.
J Biol Chem ; 288(47): 33611-33619, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24068708

RESUMO

Allosteric conformational changes in antithrombin induced by binding a specific heparin pentasaccharide result in very large increases in the rates of inhibition of factors IXa and Xa but not of thrombin. These are accompanied by CD, fluorescence, and NMR spectroscopic changes. X-ray structures show that heparin binding results in extension of helix D in the region 131-136 with coincident, and possibly coupled, expulsion of the hinge of the reactive center loop. To examine the importance of helix D extension, we have introduced strong helix-promoting mutations in the 131-136 region of antithrombin (YRKAQK to LEEAAE). The resulting variant has endogenous fluorescence indistinguishable from WT antithrombin yet, in the absence of heparin, shows massive enhancements in rates of inhibition of factors IXa and Xa (114- and 110-fold, respectively), but not of thrombin, together with changes in near- and far-UV CD and (1)H NMR spectra. Heparin binding gives only ∼3-4-fold further rate enhancement but increases tryptophan fluorescence by ∼23% without major additional CD or NMR changes. Variants with subsets of these mutations show intermediate activation in the absence of heparin, again with basal fluorescence similar to WT and large increases upon heparin binding. These findings suggest that in WT antithrombin there are two major complementary sources of conformational activation of antithrombin, probably involving altered contacts of side chains of Tyr-131 and Ala-134 with core hydrophobic residues, whereas the reactive center loop hinge expulsion plays only a minor additional role.


Assuntos
Antitrombina III/química , Fator IXa/química , Fator Xa/química , Mutação , Regulação Alostérica/genética , Antitrombina III/genética , Antitrombina III/metabolismo , Dicroísmo Circular , Fator IXa/genética , Fator IXa/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
11.
J Biol Chem ; 288(30): 21802-14, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23744066

RESUMO

α1-Protease inhibitor Portland (α1PDX) is an engineered serpin family inhibitor of the proprotein convertase (PC), furin, that exhibits high specificity but limited selectivity for inhibiting furin over other PC family proteases. Here, we characterize serpin B8, a natural inhibitor of furin, together with α1PDX-serpin B8 and furin-PC chimeras to identify determinants of serpin specificity and selectivity for furin inhibition. Replacing reactive center loop (RCL) sequences of α1PDX with those of serpin B8 demonstrated that both the P4-P1 RXXR recognition sequence as well as the P1'-P5' sequence are critical determinants of serpin specificity for furin. Alignments of PC catalytic domains revealed four variable active-site loops whose role in furin reactivity with serpin B8 was tested by engineering furin-PC loop chimeras. The furin(298-300) loop but not the other loops differentially affected furin reactivity with serpin B8 and α1PDX in a manner that depended on the serpin RCL-primed sequence. Modeling of the serpin B8-furin Michaelis complex identified serpin exosites in strand 3C close to the 298-300 loop whose substitution in α1PDX differentially affected furin reactivity depending on the furin loop and serpin RCL-primed sequences. These studies demonstrate that RCL-primed residues, strand 3C exosites, and the furin(298-300) loop are critical determinants of serpin reactivity with furin, which may be exploited in the design of specific and selective α1PDX inhibitors of PCs.


Assuntos
Furina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Serpinas/farmacologia , alfa 1-Antitripsina/farmacologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Domínio Catalítico/genética , Eletroforese em Gel de Poliacrilamida , Furina/genética , Furina/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Serpinas/genética , Serpinas/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
12.
Biochimie ; 92(11): 1587-96, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20685328

RESUMO

Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombin-proteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and location-dependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors.


Assuntos
Antitrombinas/metabolismo , Coagulação Sanguínea , Heparina/metabolismo , Peptídeo Hidrolases/metabolismo , Serpinas/metabolismo , Regulação Alostérica , Animais , Antitrombinas/química , Heparina/química , Humanos , Serpinas/química
13.
J Biol Chem ; 284(3): 1550-8, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19010776

RESUMO

We have previously shown that residues Tyr-253 and Glu-255 in the serpin antithrombin function as exosites to promote the inhibition of factor Xa and factor IXa when the serpin is conformationally activated by heparin. Here we show that functional exosites can be engineered at homologous positions in a P1 Arg variant of the serpin alpha1-proteinase inhibitor (alpha1PI) that does not require heparin for activation. The combined effect of the two exosites increased the association rate constant for the reactions of alpha1PI with factors Xa and IXa 11-14-fold, comparable with their rate-enhancing effects on the reactions of heparin-activated antithrombin with these proteases. The effects of the engineered exosites were specific, alpha1PI inhibitor reactions with trypsin and thrombin being unaffected. Mutation of Arg-150 in factor Xa, which interacts with the exosite residues in heparin-activated antithrombin, abrogated the ability of the engineered exosites in alpha1PI to promote factor Xa inhibition. Binding studies showed that the exosites enhance the Michaelis complex interaction of alpha1PI with S195A factor Xa as they do with the heparin-activated antithrombin interaction. Replacement of the P4-P2 AIP reactive loop residues in the alpha1PI exosite variant with a preferred IEG substrate sequence for factor Xa modestly enhanced the reactivity of the exosite mutant inhibitor with factor Xa by approximately 2-fold but greatly increased the selectivity of alpha1PI for inhibiting factor Xa over thrombin by approximately 1000-fold. Together, these results show that a specific and selective inhibitor of factor Xa can be engineered by incorporating factor Xa exosite and reactive site recognition determinants in a serpin.


Assuntos
Fator IXa/antagonistas & inibidores , Inibidores do Fator Xa , alfa 1-Antitripsina/química , Substituição de Aminoácidos , Fator IXa/química , Fator IXa/genética , Fator IXa/metabolismo , Fator Xa/química , Fator Xa/genética , Fator Xa/metabolismo , Heparina/química , Humanos , Ligação Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
14.
J Biol Chem ; 283(21): 14417-29, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18375953

RESUMO

A conformationally altered prelatent form of antithrombin that possesses both anticoagulant and antiangiogenic activities is produced during the conversion of native to latent antithrombin (Larsson, H., Akerud, P., Nordling, K., Raub-Segall, E., Claesson-Welsh, L., and Björk, I. (2001) J. Biol. Chem. 276, 11996-12002). Here, we show that the previously characterized prelatent antithrombin is a mixture of native antithrombin and a modified, true prelatent antithrombin that are resolvable by heparin-agarose chromatography. Kinetic analyses revealed that prelatent antithrombin is an intermediate in the conversion of native to latent antithrombin whose formation is favored by stabilizing anions of the Hofmeister series. Purified prelatent antithrombin had reduced anticoagulant function compared with native antithrombin, due to a reduced heparin affinity and consequent impaired ability of heparin to either bridge prelatent antithrombin and coagulation proteases in a ternary complex or to induce full conformational activation of the serpin. Significantly, prelatent antithrombin possessed an antiangiogenic activity more potent than that of latent antithrombin, based on the relative abilities of the two forms to inhibit endothelial cell growth. The prelatent form was conformationally altered from native antithrombin as judged from an attenuation of tryptophan fluorescence changes following heparin activation and a reduced thermal stability. The alterations are consistent with the limited structural changes involving strand 1C observed in a prelatent form of plasminogen activator inhibitor-1 (Dupont, D. M., Blouse, G. E., Hansen, M., Mathiasen, L., Kjelgaard, S., Jensen, J. K., Christensen, A., Gils, A., Declerck, P. J., Andreasen, P. A., and Wind, T. (2006) J. Biol. Chem. 281, 36071-36081), since the (1)H NMR spectrum, electrophoretic mobility, and proteolytic susceptibility of prelatent antithrombin most resemble those of native rather than those of latent antithrombin. Together, these results demonstrate that limited conformational alterations of antithrombin that modestly reduce anticoagulant activity are sufficient to generate antiangiogenic activity.


Assuntos
Inibidores da Angiogênese/metabolismo , Anticoagulantes/metabolismo , Antitrombinas/metabolismo , Antitrombinas/isolamento & purificação , Proliferação de Células , Células Cultivadas , Fator Xa/metabolismo , Heparina/metabolismo , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
15.
J Biol Chem ; 282(46): 33609-33622, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17875649

RESUMO

Heparin activates the serpin, antithrombin, to inhibit its target blood-clotting proteases by generating new protease interaction exosites. To resolve the effects of these exosites on the initial Michaelis docking step and the subsequent acylation and conformational change steps of antithrombin-protease reactions, we compared the reactions of catalytically inactive S195A and active proteases with site-specific fluorophore-labeled antithrombins that allow monitoring of these reaction steps. Heparin bound to N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled antithrombins and accelerated the reactions of the labeled inhibitor with thrombin and factor Xa similar to wild type. Equilibrium binding of NBD-labeled antithrombins to S195A proteases showed that exosites generated by conformationally activating antithrombin with a heparin pentasaccharide enhanced the affinity of the serpin for S195A factor Xa minimally 100-fold. Moreover, additional bridging exosites provided by a hexadecasaccharide heparin activator enhanced antithrombin affinity for both S195A factor Xa and thrombin at least 1000-fold. Rapid kinetic studies showed that these exosite-mediated enhancements in Michaelis complex affinity resulted from increases in k(on) and decreases in k(off) and caused antithrombin-protease reactions to become diffusion-controlled. Competitive binding and kinetic studies with exosite mutant antithrombins showed that Tyr-253 was a critical mediator of exosite interactions with S195A factor Xa; that Glu-255, Glu-237, and Arg-399 made more modest contributions to these interactions; and that exosite interactions reduced k(off) for the Michaelis complex interaction. Together these results show that exosites generated by heparin activation of antithrombin function both to promote the formation of an initial antithrombin-protease Michaelis complex and to favor the subsequent acylation of this complex.


Assuntos
Antitrombinas/química , Coagulação Sanguínea , Diaminas/química , Heparina/química , Oxidiazóis/química , Peptídeo Hidrolases/fisiologia , Ligação Competitiva , Catálise , Difusão , Relação Dose-Resposta a Droga , Fator Xa/química , Corantes Fluorescentes/química , Humanos , Cinética , Modelos Biológicos , Oxidiazóis/farmacologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Espectrometria de Fluorescência/métodos , Trombina/química
16.
J Biol Chem ; 281(19): 13424-13432, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16517611

RESUMO

We previously showed that conformational activation of the anticoagulant serpin, antithrombin, by heparin generates new exosites in strand 3 of beta-sheet C, which promote the reaction of the inhibitor with the target proteases, factor Xa and factor IXa. To determine which residues comprise the exosites, we mutated strand 3C residues that are conserved in all vertebrate antithrombins. Combined mutations of the three conserved surface-accessible residues, Tyr253,Glu255, and Lys257, or of just Tyr253 and Glu255, but not any of these residues alone, was sufficient to reproduce the exosite defects of a strand 3C antithrombin-alpha1-proteinase inhibitor chimera in reactions of the heparin-activated variants with both factor Xa and factor IXa. Importantly, the exosite-defective antithrombins bound heparin with nearly wild-type affinities, and the heparin-activated mutants showed near normal reactivities with thrombin, a protease that does not utilize the exosite. Mutation of the conserved but partially buried strand 3C residue, Gln254, the reactive loop P6' residue, Arg399, which interacts with Glu255, or a residue proposed to constitute the exosite from modeling studies, Glu237, all produced minimal effects on antithrombin reactivity with thrombin, factor Xa, and factor IXa in the absence or presence of heparin. Together, these results indicate that Tyr253 and Glu255 are key exosite determinants responsible for promoting the reactions of conformationally activated antithrombin with both factor Xa and factor IXa.


Assuntos
Antitrombina III/química , Antitrombina III/metabolismo , Fator IXa/antagonistas & inibidores , Inibidores do Fator Xa , Ácido Glutâmico/metabolismo , Heparina/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Antitrombina III/genética , Sítios de Ligação , Fator IXa/metabolismo , Fator Xa/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Trombina/metabolismo
17.
Blood ; 106(5): 1621-8, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905187

RESUMO

The heparin-binding site of antithrombin is shown here to play a crucial role in mediating the antiangiogenic activity of conformationally altered cleaved and latent forms of the serpin. Blocking the heparin-binding site of cleaved or latent antithrombin by complexation with a high-affinity heparin pentasaccharide abolished the serpin's ability to inhibit proliferation, migration, capillary-like tube formation, basic fibroblast growth factor (bFGF) signaling, and perlecan gene expression in bFGF-stimulated human umbilical vein endothelial cells. Mutation of key heparin binding residues, when combined with modifications of Asn-linked carbohydrate chains near the heparin-binding site, also could abrogate the anti-proliferative activity of the cleaved serpin. Surprisingly, mutation of Lys114, which blocks anticoagulant activation of antithrombin by heparin, caused the native protein to acquire antiproliferative activity without the need for conformational change. Together, these results indicate that the heparin-binding site of antithrombin is of crucial importance for mediating the serpin's antiangiogenic activity and that heparin activation of native antithrombin constitutes an antiangiogenic switch that is responsible for turning off the antiangiogenic activity of the native serpin.


Assuntos
Inibidores da Angiogênese/farmacologia , Antitrombinas/farmacologia , Heparina/metabolismo , Inibidores da Angiogênese/antagonistas & inibidores , Inibidores da Angiogênese/metabolismo , Antitrombinas/metabolismo , Sítios de Ligação/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Mol Biol Cell ; 15(9): 4234-47, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15229287

RESUMO

Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.


Assuntos
Tirosina/química , Vinculina/química , Vinculina/metabolismo , Quinases da Família src/metabolismo , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sítios de Ligação/genética , Plaquetas/metabolismo , Células COS , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Clonais , Adesões Focais , Humanos , Técnicas In Vitro , Camundongos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Fosforilação , Agregação Plaquetária , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vinculina/genética
19.
J Biol Chem ; 278(51): 51433-40, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14532267

RESUMO

We have previously shown that exosites in antithrombin outside the P6-P3' reactive loop region become available upon heparin activation to promote rapid inhibition of the target proteases, factor Xa and factor IXa. To identify these exosites, we prepared six antithrombin-alpha 1-proteinase inhibitor chimeras in which antithrombin residues 224-286 and 310-322 that circumscribe a region surrounding the reactive loop on the inhibitor surface were replaced in 10-16-residue segments with the homologous segments of alpha1-proteinase inhibitor. All chimeras bound heparin with a high affinity similar to wild-type, underwent heparin-induced fluorescence changes indicative of normal conformational activation, and were able to form SDS-stable complexes with thrombin, factor Xa, and factor IXa and inhibit these proteases with stoichiometries minimally altered from those of wild-type antithrombin. With only one exception, conformational activation of the chimeras with a heparin pentasaccharide resulted in normal approximately 100-300-fold enhancements in reactivity with factor Xa and factor IXa. The exception was the chimera in which residues 246-258 were replaced, corresponding to strand 3 of beta-sheet C, which showed little or no enhancement of its reactivity with these proteases following pentasaccharide activation. By contrast, all chimeras including the strand 3C chimera showed essentially wild-type reactivities with thrombin after pentasaccharide activation as well as normal full-length heparin enhancements in reactivity with all proteases due to heparin bridging. These findings suggest that antithrombin exosites responsible for enhancing the rates of factor Xa and factor IXa inhibition in the conformationally activated inhibitor lie in strand 3 of beta-sheet C of the serpin.


Assuntos
Antitrombina III/química , Fator IXa/antagonistas & inibidores , Inibidores do Fator Xa , Heparina/farmacologia , Serpinas/metabolismo , Sequência de Aminoácidos , Antitrombina III/fisiologia , Fator IXa/metabolismo , Fator Xa/metabolismo , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão , Inibidores de Serina Proteinase/metabolismo , Serpinas/efeitos dos fármacos , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...