Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(1): 21-28, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229748

RESUMO

Oncogenic KRAS mutations were identified decades ago, yet the selective inhibition of specific KRAS mutant proteins represents an ongoing challenge. Recent progress has been made in targeting certain P-loop mutant proteins, in particular KRAS G12C, for which the covalent inhibition of the GDP state via the Switch II pocket is now a clinically validated strategy. Inhibition of other KRAS mutant proteins such as KRAS G13D, on the other hand, still requires clinical validation. The remoteness of the D13 residue relative to the Switch II pocket in combination with the solvent exposure and conformational flexibility of the D13 side chain, as well as the difficulties of targeting carboxylate residues covalently, renders this specific protein particularly challenging to target selectively. In this report, we describe the design and evaluation of potent and KRAS G13D-selective reversible inhibitors. Subnanomolar binding to the GDP state Switch II pocket and biochemical selectivity over WT KRAS are achieved by leveraging a salt bridge with D13.

2.
Anal Chem ; 94(2): 1230-1239, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34990117

RESUMO

With recent advances and success in several drugs designed to treat acute and chronic diseases, targeted covalent inhibitors show a resurgence in drug discovery. As covalent inhibition is time-dependent, the preferred quantitative potency metric of irreversible inhibitors is the second-order rate constant kinact/Ki, rather than IC50. Here, we present the development of a mass spectrometry-based platform for rapid kinetic analysis of irreversible covalent inhibitors. Using a simple liquid handling robot for automated sample preparation and a solid-phase extraction-based RapidFire-MS system for rapid MS analysis, kinetic characterization of covalent inhibitors was performed in high throughput both by intact protein analysis and targeted multiple reaction monitoring (MRM). In addition, a bimolecular reaction model was applied to extract kinact/Ki in data fitting, providing tremendous flexibility in the experimental design to characterize covalent inhibitors with various properties. Using KRASG12C inhibitors as a test case, the platform was demonstrated to be effective for studying covalent inhibitors with a wide range of kinact/Ki values from single digit to 3 × 105 M-1 s-1.


Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas p21(ras) , Cinética
3.
Invest Ophthalmol Vis Sci ; 60(10): 3320-3331, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369034

RESUMO

Purpose: We previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind and stabilize αB-crystallin (cryAB) in vitro and to produce a similar therapeutic effect in cryAB(R120G) mutant and aged wild-type mice with cataracts. VP1-001 and ent-VP1-001 have identical physicochemical properties. These experiments are designed to critically evaluate whether stereoselective binding to cryAB is required for activity. Methods: We compared the binding of VP1-001 and ent-VP1-001 to cryAB using in silico docking, differential scanning fluorimetry (DSF), and microscale thermophoresis (MST). Compounds were delivered by six topical administrations to mouse eyes over 2 weeks, and the effects on cataracts and lens refractive measures in vivo were examined. Additionally, lens epithelial and fiber cell morphologies were assessed via transmission electron microscopy. Results: Docking studies suggested greater binding of VP1-001 into a deep groove in the cryAB dimer compared with ent-VP1-001. Consistent with this prediction, DSF and MST experiments showed that VP1-001 bound cryAB, whereas ent-VP1-001 did not. Accordingly, topical treatment of lenses with ent-VP1-001 had no effect, whereas VP1-001 produced a statistically significant improvement in lens clarity and favorable changes in lens morphology. Conclusions: The ability of VP1-001 to bind native cryAB dimers is important for its ability to reverse lens opacity in mouse models of cataracts.


Assuntos
Catarata/tratamento farmacológico , Oxisteróis/farmacologia , Cadeia B de alfa-Cristalina/metabolismo , Administração Oftálmica , Animais , Catarata/metabolismo , Catarata/patologia , Cromatografia em Gel , Modelos Animais de Doenças , Fluorometria , Cristalino/efeitos dos fármacos , Cristalino/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Soluções Oftálmicas , Oxisteróis/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Lâmpada de Fenda
4.
Science ; 343(6170): 541-4, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24292626

RESUMO

How an individual's longevity is affected by the opposite sex is still largely unclear. In the nematode Caenorhabditis elegans, the presence of males accelerated aging and shortened the life span of individuals of the opposite sex (hermaphrodites), including long-lived or sterile hermaphrodites. The male-induced demise could occur without mating and required only exposure of hermaphrodites to medium in which males were once present. Such communication through pheromones or other diffusible substances points to a nonindividual autonomous mode of aging regulation. The male-induced demise also occurred in other species of nematodes, suggesting an evolutionary conserved process whereby males may induce the disposal of the opposite sex to save resources for the next generation or to prevent competition from other males.


Assuntos
Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Animais , Evolução Biológica , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação da Expressão Gênica , Genes de Helmintos/genética , Longevidade/efeitos dos fármacos , Longevidade/genética , Masculino , Hormônios Peptídicos/genética , Interferência de RNA
5.
J Biol Chem ; 288(26): 18778-83, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23689506

RESUMO

The ascarosides, small-molecule signals derived from combinatorial assembly of primary metabolism-derived building blocks, play a central role in Caenorhabditis elegans biology and regulate many aspects of development and behavior in this model organism as well as in other nematodes. Using HPLC-MS/MS-based targeted metabolomics, we identified novel ascarosides incorporating a side chain derived from succinylation of the neurotransmitter octopamine. These compounds, named osas#2, osas#9, and osas#10, are produced predominantly by L1 larvae, where they serve as part of a dispersal signal, whereas these ascarosides are largely absent from the metabolomes of other life stages. Investigating the biogenesis of these octopamine-derived ascarosides, we found that succinylation represents a previously unrecognized pathway of biogenic amine metabolism. At physiological concentrations, the neurotransmitters serotonin, dopamine, and octopamine are converted to a large extent into the corresponding succinates, in addition to the previously described acetates. Chemically, bimodal deactivation of biogenic amines via acetylation and succinylation parallels posttranslational modification of proteins via acetylation and succinylation of L-lysine. Our results reveal a small-molecule connection between neurotransmitter signaling and interorganismal regulation of behavior and suggest that ascaroside biosynthesis is based in part on co-option of degradative biochemical pathways.


Assuntos
Aminas Biogênicas/metabolismo , Caenorhabditis elegans/metabolismo , Octopamina/química , Agonistas alfa-Adrenérgicos/química , Animais , Comportamento Animal , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Glicosídeos/química , Espectrometria de Massas , Neurotransmissores/metabolismo , Feromônios/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Succinatos/química
6.
Proc Natl Acad Sci U S A ; 110(14): 5522-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509272

RESUMO

Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulin-like growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD(+)-dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascaroside-mediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Glicolipídeos/metabolismo , Longevidade/fisiologia , Sirtuínas/metabolismo , Estresse Fisiológico/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Floxuridina , Estresse Oxidativo/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
7.
PLoS One ; 8(1): e54456, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372726

RESUMO

Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause "attaching and effacing" (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/prevenção & controle , Escherichia coli/patogenicidade , Ácidos Indolacéticos/farmacologia , Indóis/farmacologia , Adesinas Bacterianas/biossíntese , Animais , Aderência Bacteriana/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/mortalidade , Humanos , Ácidos Indolacéticos/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Indóis/isolamento & purificação , Indóis/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/biossíntese , Análise de Sobrevida , Virulência , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/biossíntese
8.
ACS Chem Biol ; 8(2): 309-13, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23163740

RESUMO

Caenorhabditis elegans lives in compost and decaying fruit, eats bacteria and is exposed to pathogenic microbes. We show that C. elegans is able to modify diverse microbial small-molecule toxins via both O- and N-glucosylation as well as unusual 3'-O-phosphorylation of the resulting glucosides. The resulting glucosylated derivatives have significantly reduced toxicity to C. elegans, suggesting that these chemical modifications represent a general mechanism for worms to detoxify their environments.


Assuntos
Caenorhabditis elegans/metabolismo , Fenazinas/metabolismo , Fenazinas/toxicidade , Animais , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Estrutura Molecular , Fenazinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/toxicidade , Relação Estrutura-Atividade
9.
ACS Chem Biol ; 8(2): 314-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23163760

RESUMO

Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid ß-oxidation. Two groups of ethanolamides feature ß-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonate at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid ß-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans.


Assuntos
Amidas/química , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Deutério/química , Etanol/química , Modelos Animais , Amidas/metabolismo , Animais , Caenorhabditis elegans/genética , Etanol/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular
10.
ACS Chem Biol ; 7(8): 1321-5, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22662967

RESUMO

In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,ß-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal ß-oxidation produces functionally different ascaroside profiles.


Assuntos
Metabolômica/métodos , Feromônios/química , Animais , Comportamento Animal , Caenorhabditis elegans , Quimiotaxia , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/química , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Glicosídeos/química , Masculino , Espectrometria de Massas/métodos , Modelos Biológicos , Peroxissomos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...