Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 34365, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694838

RESUMO

We describe the generation of a set of plasmid vector tools that allow the rapid generation of complex-interacting stable transgenes in immortalized and primary cells. Of particular importance is inclusion of a mechanism to monitor the activation status of regulatory pathways via a reporter cassette (using Gaussia Luciferase), with control of additional transgene expression through doxycycline de-repression. The resulting vectors can be used to assess regulatory pathway activation and are well suited for regulatory pathway crosstalk studies. The system incorporates MultiSite-Gateway cloning for the rapid generation of vectors allowing flexible choice of promoters and transgenes, and Sleeping Beauty transposase technology for efficient incorporation of multiple transgenes in into host cell DNA. The vectors and a library of compatible Gateway Entry clones are available from the non-profit plasmid repository Addgene.


Assuntos
Engenharia Genética , Transgenes , Clonagem Molecular , Doxiciclina/farmacologia , Vetores Genéticos , Células HEK293 , Humanos
2.
Mol Cell Endocrinol ; 423: 87-95, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26768118

RESUMO

ASA404 (Vadimezan) belongs to a class of agents with disrupting properties against tumor vasculature, which is partly mediated by TNFα-signaling. Preclinical and early clinical studies have indicated promising results for ASA404, while extended clinical trials performed poorly. Our aim was to investigate the potential therapeutic applicability of ASA404 against endocrine tumors. Moreover, as the reason for the unpredictable clinical anti-tumor activity of ASA 404 remained uncertain in previous studies, we compared two tumor models of endocrine origin with different responses to ASA404 treatment. Specifically, we determined anti-tumoral effects in preclinical models of neuroendocrine tumors of the gastroenteropancreatic system (BON) and adrenocortical cancer (NCI-H295R) in vitro and in xenograft models in vivo. Upon treatment of tumor bearing mice significant anti-tumoral effects, an increase in TNFα as well as activation of TNFα-specific downstream signaling were evident in the BON tumor model while no comparable effects were detectable for NCI-H295R. We identified TNFAIP3/A20, a key molecule of an inhibitory feedback-loop downstream of TNF-receptor 1, CD40, Toll-like receptors, NOD-like receptors and the interleukin-1 receptor signaling cascades, as overexpressed in the adrenocortical carcinoma tumor model. Subsequent analyses of clinical patient samples confirmed a correlation between tumor TNFAIP3 expression levels and overall survival in patients with ACC. Taken together our findings provide evidence that modulation of TNFα-signaling could be of relevance both for the clinical course of ACC patients and as a marker of treatment response.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Inibidores da Angiogênese/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Xantonas/farmacologia , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/mortalidade , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Modelos de Riscos Proporcionais , Transdução de Sinais , Ativação Transcricional , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 6(5): 3306-18, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25650658

RESUMO

Inflammation contributes to important traits that cancer cells acquire during malignant progression. Gene array data recently identified upregulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in aggressive pancreatic cancer cells. IFIT3 belongs to the group of interferon stimulated genes (ISG), can be induced by several cellular stress stimuli and by its tetratricopeptide repeats interacts with a multitude of cellular proteins. Upregulation of IFIT3 was confirmed in the aggressive pancreatic cancer cell line L3.6pl compared with its less aggressive cell line of origin, COLO357FG. Transgenic induction of IFIT3 expression in COLO357FG resulted in greater mass of orthotopic tumors and higher prevalence of metastases. Several important traits that mediate malignancy were altered by IFIT3: increased VEGF and IL-6 secretion, chemoresistance and decreased starvation-induced apoptosis. IFIT3 showed binding to JNK and STAT1, the latter being an important inducer of IFIT3 expression. Despite still being alterable by "classical" IFN or NFκB signaling, our findings indicate constitutive - possibly auto-regulated - upregulation of IFIT3 in L3.6pl without presence of an adequate inflammatory stimulus. The transcription factor SOX9, which is linked to regulation of hypoxia-related genes, was identified as a key mediator of upregulation of the oncogene IFIT3 and thereby sustaining a "pseudoinflammatory" cellular condition.


Assuntos
Adenocarcinoma/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/secundário , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima
4.
Target Oncol ; 10(2): 215-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24950733

RESUMO

Cancer stem cells (CSCs) have been proposed to underlie the initiation and maintenance of tumor growth and the development of chemoresistance in solid tumors. The identification and role of these important cells in pancreatic cancer remains controversial. Here, we isolate side population (SP) cells from the highly aggressive and metastatic human pancreatic cancer cell line L3.6pl and evaluate their potential role as models for CSCs. SP cells were isolated following Hoechst 33342 staining of L3.6pl cells. SP, non-SP, and unsorted L3.6pl cells were orthotopically xenografted into the pancreas of nude mice and tumor growth observed. RNA was analyzed by whole genome array and pathway mapping was performed. Drug resistant variants of L3.6pl were developed and examined for SP proportions and evaluated for surface expression of known CSC markers. A distinct SP with the ability to self-renew and differentiate into non-SP cells was isolated from L3.6pl (0.9 % ± 0.22). SP cells showed highly tumorigenic and metastatic characteristics after orthotopic injection. Transcriptomic analysis identified modulation of gene networks linked to tumorigenesis, differentiation, and metastasization in SP cells relative to non-SP cells. Wnt, NOTCH, and EGFR signaling pathways associated with tumor stem cells were altered in SP cells. When cultured with increasing concentrations of gemcitabine, the proportion of SP cells, ABCG2(+), and CD24(+) cells were significantly enriched, whereas 5-fluorouracil (5-FU) treatment lowered the percentage of SP cells. SP cells were distinct from cells positive for previously postulated pancreatic CSC markers. The Hoechst-induced side population in L3.6pl cells comprises a subset of tumor cells displaying aggressive growth and metastasization, increased gemcitabine-, but not 5-FU resistance. The cells may act as a partial model for CSC biology.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Células da Side Population/efeitos dos fármacos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Células da Side Population/metabolismo , Células da Side Population/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
Mol Cancer Res ; 12(3): 421-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24302456

RESUMO

UNLABELLED: Pancreatic cancer aggressiveness is characterized by its high capacity for local invasion, ability to promote angiogenesis, and potential to metastasize. Hypoxia is known to represent a crucial step in the development of aggressive malignant features of many human cancers. However, micrometastatic tumors are not typically subjected to hypoxic events during early stages of dissemination; therefore, it is unclear how these tumors are able to maintain their aggressive phenotype. Thus, the identification of regulators of hypoxia-related genes in aggressive/metastatic tumors represents a fundamental step for the design of future therapies to treat pancreatic cancer. To this end, transcriptomic profiles were compared between the nonmetastatic pancreatic cancer cell line FG (LMET) and its angiogenic/metastatic derivate L3.6pl (HMET) under normoxic or hypoxic conditions. Cluster analysis revealed a number of transcripts that were induced by hypoxia in nonmetastatic cancer cells. Strikingly, this cluster was determined to be constitutively activated under normoxia in the metastatic cancer cells and could not be further induced by hypoxia. A subset of these transcripts were regulated by the transcription factor SOX9 in the aggressive-metastatic cells, but driven by hypoxia-inducible factor-1α (HIF-1α) in the parental nonmetastatic cell line. Moreover, these transcripts were enriched in cancer-related networks including: WNT, CXCR4, retinoic acid, and (FAK) focal adhesion kinase, gene PTK2 signaling pathways. In functional assays, inhibition of SOX9 expression in HMET cells led to increased apoptosis and reduced migration in vitro and a significant reduction in primary tumor growth, angiogenesis, and metastasis following orthotopic tumor cell injection. At the molecular level, the control of SOX9 expression was associated with changes in the methylation status of the SOX9 promoter. Finally, SOX9 upregulation was verified in a series of tumor specimens of patients with pancreatic carcinoma. IMPLICATIONS: SOX9 represents a novel target for pancreatic cancer therapy.


Assuntos
Hipóxia Celular/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOX9/metabolismo , Animais , Apoptose/fisiologia , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Metilação de DNA , Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Fosforilação , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Análise Serial de Tecidos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
6.
Hum Mol Genet ; 22(20): 4164-79, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23748427

RESUMO

Skin barrier function is primarily assigned to the outer epidermal layer, the stratum corneum (SC), mainly composed of corneocytes and lipid-enriched extracellular matrix. Epidermal ceramides (Cers) are essential barrier lipids, containing ultra-long-chain (ULC) fatty acids (FAs) with a unique ω-hydroxy group, which is necessary for binding to corneocyte proteins. In the SC, Cers are believed to derive from glucosylated intermediates, namely glucosylceramides (GlcCers), as surmised from human Gaucher's disease and related mouse models. Tamoxifen (TAM)-induced deletion of the endogenous GlcCer-synthesizing enzyme UDP-glucose:ceramide glucosyltransferase (UGCG) in keratin K14-positive cells resulted in epidermal GlcCer depletion. Although free extractable Cers were elevated in total epidermis and as well in SC, protein-bound Cers decreased significantly in Ugcg(f/fK14CreERT2) mice, indicating glucosylation to be required for regular Cer processing as well as arrangement and extrusion of lipid lamellae. The almost complete loss of protein-bound Cers led to a disruption of the water permeability barrier (WPB). UGCG-deficient mice developed an ichthyosis-like skin phenotype marked by impaired keratinocyte differentiation associated with delayed wound healing. Gene expression profiling of Ugcg-mutant skin revealed a subset of differentially expressed genes involved in lipid signaling and epidermal differentiation/proliferation, correlating to human skin diseases such as psoriasis and atopic dermatitis. Peroxisome proliferator-activated receptor beta/delta (PPARß/δ), a Cer-sensitive transcription factor was identified as potential mediator of the altered gene sets.


Assuntos
Diferenciação Celular , Ceramidas/metabolismo , Células Epidérmicas , Glucosilceramidas/metabolismo , Glucosiltransferases/metabolismo , Queratinócitos/citologia , Animais , Epiderme/metabolismo , Perfilação da Expressão Gênica , Glucosiltransferases/genética , Humanos , Queratinócitos/metabolismo , Lipídeos/biossíntese , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Transdução de Sinais/genética , Fenômenos Fisiológicos da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...