Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105331, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820867

RESUMO

The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.


Assuntos
Cobre , Escherichia coli , Sítios de Ligação , Cobre/metabolismo , Escherichia coli/metabolismo , Íons/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Prata/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Chembiochem ; 24(18): e202300250, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391388

RESUMO

'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240 K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Hidrogenase/metabolismo , Oxirredução , Peptídeos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
3.
Eng Life Sci ; 23(3): e202200052, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874609

RESUMO

The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of Aspergillus niger, A. terreus, and A. oryzae. The spent medium of A. niger showed the highest silver reduction capacities with up to 15 µmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of A. niger was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.

4.
Biochemistry ; 62(2): 241-252, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36121716

RESUMO

With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.


Assuntos
Carbono , Carbono/química
5.
J Chem Inf Model ; 62(14): 3401-3414, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35771966

RESUMO

Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.


Assuntos
Acetiltransferases , Alanina , Acetiltransferases/química , Acetiltransferases/metabolismo , Catálise , Glicina/metabolismo , Peptídeos
6.
Angew Chem Int Ed Engl ; 61(28): e202201831, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35384202

RESUMO

While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.

7.
Faraday Discuss ; 234(0): 315-335, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156975

RESUMO

Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular anchoring of metal catalysts to protein hosts provides flexible and easy to optimise systems. The use of cofactor dependent enzymes as hosts gives the advantage of both a (hydrophobic) binding site for the substrate and a cofactor pocket to accommodate the catalyst. Here, we present a computationally driven design approach of ArMs for the transfer hydrogenation reaction of cyclic imines, starting from the NADP+-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbADH). We tested and developed a molecular docking workflow to define and optimize iridium catalysts with high affinity for the cofactor binding site of TbADH. The workflow uses high throughput docking of compound libraries to identify key structural motifs for high affinity, followed by higher accuracy docking methods on smaller, focused ligand and catalyst libraries. Iridium sulfonamide catalysts were selected and synthesised, containing either a triol, a furane, or a carboxylic acid to provide the interaction with the cofactor binding pocket. IC50 values of the resulting complexes during TbADH-catalysed alcohol oxidation were determined by competition experiments and were between 4.410 mM and 0.052 mM, demonstrating the affinity of the iridium complexes for either the substrate or the cofactor binding pocket of TbADH. The catalytic activity of the free iridium complexes in solution showed a maximal turnover number (TON) of 90 for the reduction of salsolidine by the triol-functionalised iridium catalyst, whilst in the presence of TbADH, only the iridium catalyst with the triol anchoring functionality showed activity for the same reaction (TON of 36 after 24 h). The observation that the artificial metalloenzymes developed here lacked stereoselectivity demonstrates the need for the further investigation and optimisation of the ArM. Our results serve as a starting point for the design of robust artificial metalloenzymes, exploiting supramolecular anchoring to natural NAD(P)H binding pockets.


Assuntos
Álcool Desidrogenase , Metaloproteínas , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Catálise , Irídio , Simulação de Acoplamento Molecular
8.
J Chem Inf Model ; 62(3): 591-601, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35045248

RESUMO

Enzyme-based iron-sulfur clusters, exemplified in families such as hydrogenases, nitrogenases, and radical S-adenosylmethionine enzymes, feature in many essential biological processes. The functionality of biological iron-sulfur clusters extends beyond simple electron transfer, relying primarily on the redox activity of the clusters, with a remarkable diversity for different enzymes. The active-site structure and the electrostatic environment in which the cluster resides direct this redox reactivity. Oriented electric fields in enzymatic active sites can be significantly strong, and understanding the extent of their effect on iron-sulfur cluster reactivity can inform first steps toward rationally engineering their reactivity. An extensive systematic density functional theory-based screening approach using OPBE/TZP has afforded a simple electric field-effect representation. The results demonstrate that the orientation of an external electric field of strength 28.8 MV cm-1 at the center of the cluster can have a significant effect on its relative stability in the order of 35 kJ mol-1. This shows clear implications for the reactivity of iron-sulfur clusters in enzymes. The results also demonstrate that the orientation of the electric field can alter the most stable broken-symmetry state, which further has implications on the directionality of initiated electron-transfer reactions. These insights open the path for manipulating the enzymatic redox reactivity of iron-sulfur cluster-containing enzymes by rationally engineering oriented electric fields within the enzymes.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Catálise , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Oxirredução , Enxofre/química
9.
Metab Eng ; 67: 308-320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245888

RESUMO

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.


Assuntos
Escherichia coli , Biologia de Sistemas , Escherichia coli/genética , Etilenos , Laboratórios , Engenharia Metabólica , Pseudomonas syringae/genética
10.
J Inorg Biochem ; 220: 111446, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865209

RESUMO

Artificial metalloenzymes result from the insertion of a catalytically active metal complex into a biological scaffold, generally a protein devoid of other catalytic functionalities. As such, their design requires efforts to engineer substrate binding, in addition to accommodating the artificial catalyst. Here we constructed and characterised artificial metalloenzymes using alcohol dehydrogenase as starting point, an enzyme which has both a cofactor and a substrate binding pocket. A docking approach was used to determine suitable positions for catalyst anchoring to single cysteine mutants, leading to an artificial metalloenzyme capable to reduce both natural cofactors and the hydrophobic 1-benzylnicotinamide mimic. Kinetic studies revealed that the new construct displayed a Michaelis-Menten behaviour with the native nicotinamide cofactors, which were suggested by docking to bind at a surface exposed site, different compared to their native binding position. On the other hand, the kinetic and docking data suggested that a typical enzyme behaviour was not observed with the hydrophobic 1-benzylnicotinamide mimic, with which binding events were plausible both inside and outside the protein. This work demonstrates an extended substrate scope of the artificial metalloenzymes and provides information about the binding sites of the nicotinamide substrates, which can be exploited to further engineer artificial metalloenzymes for cofactor regeneration. SYNOPSIS ABOUT GRAPHICAL ABSTRACT: The manuscript provides information on the design of artificial metalloenzymes based on the bioconjugation of rhodium complexes to alcohol dehydrogenase, to improve their ability to reduce hydrophobic substrates. The graphical abstract presents different binding modes and results observed with native cofactors as substrates, compared to the hydrophobic benzylnicotinamide.


Assuntos
Álcool Desidrogenase/química , Complexos de Coordenação/química , NADP/química , NAD/química , Niacinamida/análogos & derivados , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Complexos de Coordenação/metabolismo , Simulação de Acoplamento Molecular , Mutação , NAD/metabolismo , NADP/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Oxirredução , Ligação Proteica , Ródio/química , Thermoanaerobacter/enzimologia
11.
Phys Chem Chem Phys ; 22(40): 23009-23018, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043942

RESUMO

Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular electrostatic potential). Simple linear regression models proved effective, though the interdependency of the descriptors needs to be taken into account when considering generality. A series of ionic liquids were then prepared and evaluated as solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic variation) and functionalities not available in the original data set. These new data were used to evaluate and refine the original models, which were expanded to include simple artificial neural networks. Along with showing the importance of an appropriate data set and the perils of overfitting, the work demonstrates that such models can be used to reliably predict ionic liquid solvent effects on an organic process, within the limits of the data set.

12.
Chempluschem ; 85(5): 1008-1012, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32347636

RESUMO

We report on triethylene glycol-based orthoformate cryptands, which adapt their bridgehead configurations in response to metal templates and intramolecular hydrogen bonding in a complex manner. In contrast to smaller 1.1.1-orthoformate cryptands, the inversion from out,out-2.2.2 to in,in-2.2.2 occurs spontaneously by thermal homeomorphic isomerization, i. e., without bond breakage. The global thermodynamic minimum of the entire network, which includes an unprecedented third isomer (in,out-2.2.2), could only be reached under conditions that facilitate dynamic covalent exchange. Both inversion processes were studied in detail, including DFT calculations and MD simulations, which were particularly helpful for explaining differences between equilibrium compositions in solvents chloroform and acetonitrile. Unexpectedly, the system could be driven to the in,out-2.2.2 state by using a metal template with a size mismatch with respect to the out,out-2.2.2 cage.

14.
J Chem Inf Model ; 59(12): 5111-5125, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31730347

RESUMO

Experimental assessment of catalytic reaction mechanisms and profiles of radical enzymes can be severely challenging due to the reactive nature of the intermediates and sensitivity of cofactors such as iron-sulfur clusters. Here, we present an enzyme-directed computational methodology for the assessment of thermodynamic reaction profiles and screening for radical stabilization energies (RSEs) for the assessment of catalytic turnovers in radical enzymes. We have applied this new screening method to the radical S-adenosylmethione enzyme 7-carboxy-7-deazaguanine synthase (QueE), following a detailed molecular dynamics (MD) analysis that clarifies the role of both specific enzyme residues and bound Mg2+, Ca2+, or Na+. The MD simulations provided the basis for a statistical approach to sample different conformational outcomes. RSE calculation at the M06-2X/6-31+G* level of theory provided the most computationally cost-effective assessment of enzyme-based energies, facilitated by an initial triage using semiempirical methods. The impact of intermolecular interactions on RSE was clearly established, and application to the assessment of potential alternative substrates (focusing on radical clock type rearrangements) proposes a selection of carbon-substituted analogues that would react to afford cyclopropylcarbinyl radical intermediates as candidates for catalytic turnover by QueE.


Assuntos
Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Carbono-Nitrogênio Liases/química , Metais/metabolismo , Conformação Proteica
15.
J Am Chem Soc ; 141(22): 8868-8876, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117548

RESUMO

Fluxional chemical species such as bullvalene have been a valuable source of inspiration and fundamental insight into the nature of chemical bonds. A supramolecular analogue of bullvalene, i.e., a "fluxional host-guest system", in which the ensemble of a well-defined host and guest is engaged in continuous, degenerate constitutional rearrangements, is still elusive, however. Here, we report experimental and computational evidence for guest-induced dynamic covalent rearrangements in the ammonium complexes of self-assembled orthoester cryptands. This unique behavior is made possible by the ammonium guest playing a dual role: it is sufficiently acidic to initiate dynamic covalent exchange reactions at the orthoester bridgeheads, and as a hydrogen bond donor it acts as a supramolecular template, governing the outcome of a multitude of possible intra- and intermolecular rearrangement reactions. One particularly striking example of inherent dynamic behavior was observed in host-guest complex [NH4+⊂ o-Me2-2.1.1], which spontaneously rearranged into the larger and thermodynamically more stable complex [NH4+⊂ o-Me2-2.2.1], even though this process led to the formation of poor host o-Me2-1.1.1 as a consequence of the excess of one subcomponent (diethylene glycol; "1" in our nomenclature). These inherently adaptive host-guest networks represent a unique platform for exploring the interrelationship between kinetic and thermodynamic stability. For instance, as a result of optimal NH4+ binding, complex [NH4+⊂ o-Me2-2.2.1] was found to be thermodynamically stable (negligible intermolecular rearrangements over weeks), whereas computational studies indicate that the compound is far from kinetically stable ( intramolecular rearrangements).

16.
J Mol Model ; 25(3): 68, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30762132

RESUMO

Mycobacterium tuberculosis remains a persistent pathogen, partly due to its lipid rich cell wall, of which mycolic acids (MAs) are a major component. The fluidity and conformational flexibilities of different MAs in the bacterial cell wall significantly influence its properties, function, and observed pathogenicity; thus, a proper conformational description of different MAs in different environments (e.g., in vacuum, in solution, in monolayers) can inform about their potential role in the complex setup of the bacterial cell wall. Previously, we have shown that molecular dynamics (MD) simulations of MA folding in vacuo can be used to characterize MA conformers in seven groupings relating to bending at the functional groups (W, U and Z-conformations). Providing a new OPLS-based forcefield parameterization for the critical cyclopropyl group of MAs and extensive simulations in explicit solvents (TIP4P water, hexane), we now present a more complete picture of MA folding properties together with improved simulation analysis techniques. We show that the 'WUZ' distance-based analysis can be used to pinpoint conformers with hairpin bends at the functional groups, with these conformers constituting only a fraction of accessible conformations. Applying principle component analysis (PCA) and refinement using free energy landscapes (FELs), we are able to discriminate a complete and unique set of conformational preferences for representative alpha-, methoxy- and keto-MAs, with overall preference for folded conformations. A control backbone-MA without any mero-chain functional groups showed significantly less folding in the mero-chain, confirming the role of functionalization in directing folding. Keto-MA showed the highest percentage of WUZ-type conformations and, in particular, a tendency to fold at its alpha-methyl trans-cyclopropane group, in agreement with results from Villeneuve et al. MAs demonstrate similar folding in vacuum and water, with a majority of folded conformations around the W-conformation, although the molecules are more flexible in vacuum than in water. Exchange between conformations, with a disperse distribution that includes unfolded conformers, is common in hexane for all MAs, although with more organization for Keto-MA. Globular, folded conformations are newly defined and may be specifically relevant in biofilms. Graphical abstract Through advanced simulation analysis, including principle component analysis and free energy landscapes, we reveal detailed physical insights into the solvent-dependant folding behavior of mycolic acids from M. tb.


Assuntos
Mycobacterium tuberculosis/química , Ácidos Micólicos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Ácidos Micólicos/isolamento & purificação , Análise de Componente Principal , Solventes
17.
J Phys Chem B ; 122(36): 8526-8536, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30114369

RESUMO

The stability of enzymes is critical for their application in industrial processes, which generally require different conditions from the natural enzyme environment. Both rational and random protein engineering approaches have been used to increase stability, with the latter requiring extensive experimental effort for the screening of variants. Moreover, some general rules addressing the molecular origin of protein thermostability have been established. Herein, we demonstrate the use of molecular dynamics simulations to gain molecular level understanding of protein thermostability and to engineer stabilizing mutations. Carbonic anhydrase (CA) is an enzyme with a high potential for biotechnological carbon capture applications, provided it can be engineered to withstand the high temperature process environments, inevitable in most gas treatment units. In this study, we used molecular dynamics simulations at 343, 353, and 363 K to study the relationship between structure flexibility and thermostability in bacterial α-CAs and applied this knowledge to the design of mutants with increased stability. The most thermostable α-CA known, TaCA from Thermovibrio ammonificans, had the most rigid structure during molecular dynamics simulations, but also showed regions with high flexibility. The most flexible amino acids in these regions were identified from root mean square fluctuation (RMSF) studies, and stabilizing point mutations were predicted based on their capacity to improve the calculated free energy of unfolding. Disulfide bonds were also designed at sites with suitable geometries and selected based on their location at flexible sites, assessed by B-factor calculation. Molecular dynamics simulations allowed the identification of five mutants with lower RMSF of the overall structure at 400 K, compared to wild-type TaCA. Comparison of free-energy landscapes between wild-type TaCA and the most promising mutants, Pro165Cys-Gln170Cys and Asn140Gly, showed an increased conformational stability of the mutants at 400 K.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Domínio Catalítico/genética , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Mutação , Neisseria gonorrhoeae/enzimologia , Maleabilidade , Conformação Proteica , Engenharia de Proteínas , Temperatura
18.
Phys Chem Chem Phys ; 20(11): 7523-7531, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29488986

RESUMO

The use of molecular dynamics (MD) calculations to derive relative populations of conformers is highly sensitive to both timescale and parameterisation of the MD. Where these calculations are coupled with NOE data to determine the dynamics of a molecular system, this can present issues if these populations are thus relied upon. We present an approach that refines the highly accurate PANIC NMR methodology combined with clustering approaches to generate conformers, but without restraining the simulations or considering the relative population distributions generated by MD. Combining this structural sampling with NOE fitting, we demonstrate, for S-adenosylmethionine (aqueous solution at pH 7.0), significant improvements are made to the fit of populations to the experimental data, revealing a strong overall preference for the syn conformation of the adenosyl group relative to the ribose ring, but with less discrimination for the conformation of the ribose ring itself.


Assuntos
Simulação de Dinâmica Molecular , S-Adenosilmetionina/química , Espectroscopia de Ressonância Magnética , Fenômenos Mecânicos , Conformação Molecular
19.
Chemistry ; 23(4): 953-962, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27859789

RESUMO

Controlling radical intermediates and thus catalysing and directing complex radical reactions is a central feature of S-adensosylmethionine (SAM)-dependent radical enzymes. We report ab initio and DFT calculations highlighting the specific influence of ion complexation, including Mg2+ , identified as a key catalytic component on radical stability and reaction control in 7-carboxy-7-deazaguanine synthase (QueE). Radical stabilisation energies (RSEs) of key intermediates and radical clock-like model systems of the enzyme-catalysed rearrangement of 6-carboxytetrahydropterin (CPH4), reveals a directing role of Mg2+ in destabilising both the substrate-derived radical and corresponding side reactions, with the effect that the experimentally-observed rearrangement becomes dominant over possible alternatives. Importantly, this is achieved with minimal disruption of the thermodynamics of the substrate itself, affording a novel mechanism for an enzyme to both maintain binding potential and accelerate the rearrangement step. Other mono and divalent ions were probed with only dicationic species achieving the necessary radical conformation to facilitate the reaction.


Assuntos
Carbono-Carbono Liases/metabolismo , Biocatálise , Carbono-Carbono Liases/química , Radicais Livres/química , Cinética , Magnésio/química , Modelos Moleculares , Purinas/química , Purinas/metabolismo , Teoria Quântica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Termodinâmica
20.
J Chem Phys ; 143(4): 044114, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233114

RESUMO

We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...