Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 132: 132-139, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29132920

RESUMO

Spatiotemporal environmental variation affects fish feeding behaviour and capacity for piscivorous control of prey populations, which is important for management when prey include invasive species causing ecosystem impacts. We assessed gut-contents of an important piscivore (European perch Perca fluviatilis) over two years, and analysed variables affecting initiation and amounts of feeding, focusing on an important invasive prey species, round goby (Neogobius melanostomus). We show that predation is primarily controlled by variation of physical and habitat characteristics surrounding perch. Fish prey began being incorporated in diets of perch that were >150 mm, with temperature conditions controlling initiation of their feeding. Total amounts of fish in perch diets, and amounts of round goby individually, were strongly affected by macrophyte cover; seldom were fish present in perch stomachs when macrophyte cover was >40%. Environmental densities of round goby were related to multivariate diet composition in ways that suggest predation of some native species may be relaxed in areas of dense round goby populations. There was evidence that perch predation is unlikely to limit populations of the invader, as there was only a weak relationship between round goby densities and amounts in gut contents. The results have ecosystem management implications, because some variables found to be important could be manipulated to control round goby or other similar invaders e.g. fisheries management of native piscivore stock-density and body-size, or modification of benthic environment structure.


Assuntos
Espécies Introduzidas , Percas/fisiologia , Animais , Ecossistema , Comportamento Alimentar , Perciformes , Dinâmica Populacional , Comportamento Predatório
2.
Evol Appl ; 6(5): 749-760, 2013 07.
Artigo em Inglês | MEDLINE | ID: mdl-29387163

RESUMO

Over the recent years, growing number of studies suggests that intensive size-selective fishing can cause evolutionary changes in life-history traits in the harvested population, which can have drastic negative effects on populations, ecosystems and fisheries. However, most studies to date have overlooked the potential role of immigration of fish with different phenotypes as an alternative plausible mechanism behind observed phenotypic trends. Here, we investigated the evolutionary consequences of intensive fishing simultaneously at phenotypic and molecular level in Eurasian perch (Perca fluviatilis L.) population in the Baltic Sea over a 24-year period. We detected marked changes in size- and age-distributions and increase in juvenile growth rate. We also observed reduction of age at sexual maturity in males that has frequently been considered to support the hypothesis of fisheries-induced evolution. However, combined individual-based life-history and genetic analyses indicated increased immigration of foreign individuals with different life-history patterns as an alternative mechanism behind the observed phenotypic change. This study demonstrates the value of combining genetic and phenotypic analyses and suggests that replacement or breakdown of locally adapted gene complexes may play important role in impeding the recovery of fish populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...