Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276820

RESUMO

BackgroundA fraction of COVID-19 patients develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines, but the association has often resulted from comparison of patients with diverse demographics and comorbidity status. This study examined patients with defined demographic risk factors for severe COVID-19 who developed mild vs. severe COVID-19. MethodsThis study evaluated hospitalized vs. ambulatory COVID-19 patients in the James J. Peters VA Medical Center, Bronx, NY. This cohort presented demographic risk factors for severe COVID-19: median age of 63, >80% male, >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines/chemokines. FindingsAmbulatory and hospitalized patients showed no difference in SARS-CoV-2-specific antibody levels and functions. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters was observed in hospitalized but not in ambulatory cases. Cytokine/chemokine levels also revealed differences, with notably higher IL-27 levels in hospitalized patients. Hence, among the older, mostly male patients studied here, SARS-CoV-2-specific antibody levels and functions did not distinguish hospitalized and ambulatory cases but a discordance in S2-specific antibody responses was noted in ambulatory patients, and elevated levels of specific cytokines were maintained in convalescent sera of hospitalized cases. InterpretationThe data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious studies demonstrated that high levels of SARS-CoV-2 spike binding antibodies and neutralizing antibodies were associated with COVID-19 disease severity. However, the comparisons were often made without considering demographics and comorbidities. Correlation was similarly shown between severe disease and marked elevation of several plasma cytokines but again, most analyses of cytokine responses to COVID-19 were conducted by comparison of patient cohorts with diverse demographic characteristics and risk factors. Added value of this studyWe evaluated here a comprehensive profile of SARS-CoV-2-specific antibodies (total Ig, isotypes/subtypes, Fab- and Fc-mediated functions) and a panel of 48 cytokines and chemokines in serum samples from a cohort of SARS-CoV-2-infected patients with demographic risk factors for severe COVID-19: 81% were male, 79% were >50 years old (median of 63), and 85% belonged to US minority groups (black and/or Hispanic). Comparison of hospitalized vs. ambulatory patients within this cohort revealed two features that differed between severe vs. mild COVID-19 cases: a discordant Ab response to the S2 subunit of the viral spike protein in the mild cases and an elevated response of specific cytokines and chemokines, notably IL-27, in the severe cases. Implications of all the available evidenceData from the study identified key immunologic markers for severe vs. mild COVID-19 that provide a path forward for investigations of their roles in minimizing or augmenting disease severity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256972

RESUMO

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177303

RESUMO

SARS-CoV-2 has infected millions of people and is on a trajectory to kill more than one million globally. Virus entry depends on the receptor-binding domain (RBD) of the spike protein. Although previous studies demonstrated anti-spike and -RBD antibodies as essential for protection and convalescent plasma as a promising therapeutic option, little is known about the immunoglobulin (Ig) isotypes capable of blocking virus entry. Here, we studied spike- and RBD-specific Ig isotypes in plasma/sera from two acutely infected and 29 convalescent individuals. Spike- and RBD-specific IgM, IgG1, and IgA1 antibodies were produced by all or nearly all subjects at varying levels and detected at 7-8 days post-disease onset. IgG2, IgG3, IgG4, and IgA2 were also present but at much lower levels. All samples also displayed neutralizing activity. IgM, IgG, and IgA were capable of mediating neutralization, but neutralization titers correlated better with binding levels of IgM and IgA1 than IgG.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20157222

RESUMO

The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVAG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week. ImportanceVaccines and antibody-based therapeutics like convalescent plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) is an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20059501

RESUMO

BackgroundMore than one million infections with the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) have been confirmed. While PCR-based assays are used for diagnosis, high through-put serologic methods are needed to detect antibodies for seroserveillance and for identification of seroconversion, potential plasma donors, and the nature of the immune response to this pathogen. MethodsA Luminex binding assay was used to assess the presence of antibodies in human sera from COVID-19-infected and -uninfected individuals specific for two recombinant proteins of SARS-CoV-2. FindingsFluorochrome-labeled beads were coated with a recombinant soluble stabilized trimeric SARS-CoV-2 S protein ectodomain or its central portion, the receptor binding domain (RBD). Coated beads were incubated with sera, followed by incubation with biotinylated anti-human total Ig antibodies and phycoerythrin (PE)-labeled streptavidin. Readout using a Luminex analyzer clearly differentiated between sera of the infected and uninfected subjects, delineating a wide range of serum antibody levels in infected subjects. InterpretationAntibody assays of sera can identify individuals who are infected with SARS-CoV-2 and have seroconverted, as well as subjects who have been infected and recovered. The use of the Luminex binding Ab assay has the advantage that it can be run in approximately 2.5 hours, uses very little antigen, and permits a high through-put of samples/day. FundingNIAID contracts and grants, Department of Veterans Affairs grants, the Microbiology Laboratory Clinical Services, Translational Science Hub, and Personalized Virology Initiative, and Department of Medicine of Mount Sinai Health System and Icahn School of Medicine at Mount Sinai. RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSThe outbreak of infections with SARS-CoV-2 began in late 2019. Specimens from nasopharyngeal swabs are being used in PCR-based assays to test for the presence of the virus. Until the first week in April, 2020 there were no licensed tests for the presence of serum antibodies against proteins of the virus. The first approved tests are now becoming available, but none use a format that can be scaled up for mass screening which is now needed for implementing various public health measures. As per a recent Pubmed search, less than 10 studies using serologic assays have been published and none are high through-put. Added value of this studyHigh through-put antibody tests are needed in order to identify seroconversion, to perform serosurveys, identify potential donors for plasma therapy, assess the prevalence of infection in populations, identify healthcare workers who may be immune to SARS-CoV-2, and to study the nature of the immune response to this pathogen. The method described for detecting antibodies in SARS-CoV-2-infected patients can be applied in hospital and reference labs, allowing the assessment of present and past infection in a much higher number of donors per unit of time than assays described heretofore. Implications of all the available evidenceThis study shows that a test in which magnetic beads are coated with soluble forms of the spike protein of SARS-CoV-2 can be used to test for the presence of antibodies targeting this pathogen. The platform allows for the efficient testing of multiple specimens simultaneously using as little as 5 nanograms of antigen per test. This test affords the possibility of large scale, economical and efficient antibody testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...