Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 89(9): 879-889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36592636

RESUMO

Arctigenin is a bioactive dibenzylbutyrolactone-type lignan exhibiting various pharmacological activities. The neuroprotective effects of arctigenin were demonstrated to be mediated via inhibition of AMPA and KA type glutamate receptors in the somatosensory cortex of the rat brain. The aim of this study was to compare the effects of arctigenin with matairesinol and trachelogenin on synaptic activity in ex vivo rat brain slices. Arctigenin, matairesinol and trachelogenin were isolated from Arctium lappa, Centaurea scabiosa and Cirsium arvense, respectively, and applied on brain slices via perfusion medium at the concentration range of 0.5 - 40 µM. The effects of the lignans were examined in the CA1 hippocampus and the somatosensory cortex by recording electrically evoked field potentials. Arctigenin and trachelogenin caused a significant dose-dependent decrease in the amplitude of hippocampal population spikes (POPS) and the slope of excitatory postsynaptic potentials (EPSPs), whereas matairesinol (1 µM and 10 µM) decreased EPSP slope but had no effect on POPS amplitude. Trachelogenin effect (0.5 µM, 10 µM, 20 µM) was comparable to arctigenin (1 µM, 20 µM, 40 µM) (p > 0.05). In the neocortex, arctigenin (10 µM, 20 µM) and trachelogenin (10 µM) significantly decreased the amplitude of evoked potential early component, while matairesinol (1 µM and 10 µM) had no significant effect (p > 0.05). The results suggest that trachelogenin and arctigenin act via inhibition of AMPA and KA receptors in the brain and trachelogenin has a higher potency than arctigenin. Thus, trachelogenin and arctigenin could serve as lead compounds in the development of neuroprotective drugs.


Assuntos
Lignanas , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Lignanas/farmacologia , Hipocampo
2.
Brain Sci ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575391

RESUMO

Anatomically, the brain is a symmetric structure. However, growing evidence suggests that certain higher brain functions are regulated by only one of the otherwise duplicated (and symmetric) brain halves. Hemispheric specialization correlates with phylogeny supporting intellectual evolution by providing an ergonomic way of brain processing. The more complex the task, the higher are the benefits of the functional lateralization (all higher functions show some degree of lateralized task sharing). Functional asymmetry has been broadly studied in several brain areas with mirrored halves, such as the telencephalon, hippocampus, etc. Despite its paired structure, the hypothalamus has been generally considered as a functionally unpaired unit, nonetheless the regulation of a vast number of strongly interrelated homeostatic processes are attributed to this relatively small brain region. In this review, we collected all available knowledge supporting the hypothesis that a functional lateralization of the hypothalamus exists. We collected and discussed findings from previous studies that have demonstrated lateralized hypothalamic control of the reproductive functions and energy expenditure. Also, sporadic data claims the existence of a partial functional asymmetry in the regulation of the circadian rhythm, body temperature and circulatory functions. This hitherto neglected data highlights the likely high-level ergonomics provided by such functional asymmetry.

3.
Reprod Sci ; 27(5): 1197-1205, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046448

RESUMO

The hypothalamus is the main regulatory center of many homeostatic processes, such as reproduction, food intake, and sleep-wake behavior. Recent findings show that there is a strongly interdependent side-linked localization of hypothalamic functions between the left and right hemispheres. The goal of the present study was to trace functional asymmetry of the hypothalamus related to the regulation of food intake and reproduction, in male rodents. Subjects were examined through measurements of mitochondrial metabolism ex vivo. Impact of gonadectomy and scheduled feeding was tested on the modulation of hypothalamic metabolic asymmetry. Results show that in male rats, functional lateralization of the hypothalamus can be attributed to the satiety state rather than to reproductive control. Fasting caused left-sided metabolic dominance, while satiety was linked to the right hemisphere; trends and direction in sided dominance gradually followed the changes in satiety state. Our findings revealed satiety state-dependent metabolic differences between the two hypothalamic hemispheres. It is therefore concluded that, at least in male rats, the hypothalamic hemispheres control the satiety state-related functions in an asymmetric manner.


Assuntos
Lateralidade Funcional/fisiologia , Hipotálamo/metabolismo , Mitocôndrias/metabolismo , Reprodução/fisiologia , Resposta de Saciedade/fisiologia , Animais , Castração , Homeostase/fisiologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar
4.
Brain Sci ; 9(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817561

RESUMO

The endocrine system of animals consists of fine-tuned self-regulating mechanisms that maintain the hormonal and neuronal milieu during tissue development. This complex system can be influenced by endocrine disruptors (ED)-substances that can alter the hormonal regulation even in small concentrations. By now, thousands of substances-either synthesized by the plastic, cosmetic, agricultural, or medical industry or occurring naturally in plants or in polluted groundwater-can act as EDs. Their identification and testing has been a hard-to-solve problem; Recent indications that the ED effects may be species-specific just further complicated the determination of biological ED effects. Here we compare the effects of bisphenol-A, zearalenone, and arsenic (well-known EDs) exerted on mouse and rat neural cell cultures by measuring the differences of the ED-affected neural estrogen- and thyroid receptors. EDs alters the receptor expression in a species-like manner detectable in the magnitude as well as in the nature of biological responses. It is concluded that the interspecies differences (or species specificity) in ED effects should be considered in the future testing of ED effects.

5.
Int J Mol Sci ; 19(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751674

RESUMO

Thyroid receptors play an important role in postnatal brain development. Zearalenone (ZEN), a major mycotoxin of Fusarium fungi, is well known to cause serious health problems in animals and humans through various mechanisms, including the physiological pathways of thyroid hormone (TH). In the present study, we aimed to investigate the expression of thyroid receptors α (TRα) and ß (TRß) in primary cerebellar neurons in the presence or absence of glia and following ZEN treatment, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Primary cerebellar granule cells were treated with low doses of ZEN (0.1 nM) in combination with physiologically relevant concentrations of l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3) and 17ß-estradiol (E2). Expression levels of TRα and TRß at mRNA and protein levels were slightly modified by ZEN administered alone; however, along with thyroid and steroid hormones, modelling the physiological conditions, expression levels of TRs varied highly depending on the given treatment. Gene expression levels were also highly modulated by the presence or absence of glial cells, with mostly contrasting effects. Our results demonstrate divergent transcriptional and translational mechanisms involved in the expression of TRs implied by ZEN and hormonal milieu, as well as culturing conditions.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/genética , Zearalenona/farmacologia , Animais , Estrogênios não Esteroides/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo
6.
Front Neuroendocrinol ; 48: 23-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987779

RESUMO

Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.


Assuntos
Cerebelo/metabolismo , Disruptores Endócrinos/metabolismo , Receptores de Estrogênio/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Humanos , Ligantes
7.
Acta Vet Hung ; 64(4): 497-513, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27993100

RESUMO

Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E2) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10-10 M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E2) regulation of TRα,ß in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E2. The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand-receptor interaction.


Assuntos
Compostos Benzidrílicos/farmacologia , Cerebelo/citologia , Estrogênios/metabolismo , Neurônios/efeitos dos fármacos , Fenóis/farmacologia , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Células Cultivadas , Disruptores Endócrinos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Tireóideos/genética
8.
MethodsX ; 3: 417-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27284533

RESUMO

In order to measure the activity of neuronal mitochondria, a representative proof of neuronal processes, physiologically relevant mitochondrial samples need to be gained as simply as possible. Existing methods are, however, either for tissue samples of large size and/or homogenous microstructures only, or are not tested for mitochondrial function measurements. In the present article we describe a gradient fractionation method to isolate viable and well-coupled mitochondria from relatively heterogeneous histological microstructures such as the hypothalamus. With this new method, we are able to isolate a sufficient amount of functional mitochondria for determination of respiratory activity, in a short period of time, using affordable equipment. •Verified by electron microscopy, our method separates highly enriched and well-preserved perikaryal and synaptosomal mitochondria. Both fractions contain minimal cell debris and no myelin. Respiratory measurements (carried out by Clark-type electrode) confirmed undisturbed mitochondrial function providing well-evaluable records. The demonstrated protocol yields highly viable mitochondrial subfractions within 3 h from small brain areas for high-precision examinations. Using this procedure, brain regions with relatively heterogeneous histological microstructure (hypothalamus) can also be efficiently sampled.•Up to our present knowledge, our method is the shortest available procedure with the lowest sample size to gain debris-free, fully-viable mitochondria.

9.
Artigo em Inglês | MEDLINE | ID: mdl-27338438

RESUMO

BACKGROUND: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; METHODS: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor ß (ERß) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; RESULTS: RESULTS show a wide diversity in ED effects on ERß mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; CONCLUSION: The observed potency of the EDs to influence ERß mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency.


Assuntos
Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Cerebelo/metabolismo , Disruptores Endócrinos/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios não Esteroides/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Cânfora/análogos & derivados , Cânfora/metabolismo , Estradiol/metabolismo , Feminino , Humanos , Masculino , Fenóis/metabolismo , Ratos Sprague-Dawley , Tironinas/metabolismo
10.
Neurochem Int ; 97: 83-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26972612

RESUMO

Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Neurônios/fisiologia , Receptores de Glutamato/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos
11.
PLoS One ; 10(9): e0137462, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339901

RESUMO

Hypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sides. However, the nature of interplay between the hemispheres with regard to distinct hypothalamic functions is still unclear. Here we investigated the metabolic asymmetry between the left and right hypothalamic sides of ovariectomized female rats by measuring mitochondrial respiration rates, a parameter that reflects the intensity of cell and tissue metabolism. Ovariectomized (saline injected) and ovariectomized+estrogen injected animals were fed ad libitum or fasted to determine 1) the contribution of estrogen to metabolic asymmetry of hypothalamus; and 2) whether the hypothalamic asymmetry is modulated by the satiety state. Results show that estrogen-priming significantly increased both the proportion of animals with detected hypothalamic lateralization and the degree of metabolic difference between the hypothalamic sides causing a right-sided dominance during state 3 mitochondrial respiration (St3) in ad libitum fed animals. After 24 hours of fasting, lateralization in St3 values was clearly maintained; however, instead of the observed right-sided dominance that was detected in ad libitum fed animals here appeared in form of either right- or left-sidedness. In conclusion, our results revealed estrogen- and satiety state-dependent metabolic differences between the two hypothalamic hemispheres in female rats showing that the hypothalamic hemispheres drive the reproductive and satiety state related functions in an asymmetric manner.


Assuntos
Estradiol/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Jejum/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Mitocôndrias/metabolismo , Ovariectomia , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Ratos Wistar , Saciação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...