Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069079

RESUMO

The main aim of this study is to report basic knowledge on how a protein corona (PC) could affect or modify the way in which multifunctionalized nanoparticles interact with cells. With this purpose, we have firstly optimized the development of a target-specific nanocarrier by coupling a specific fluorescent antibody on the surface of functionalized lipid liquid nanocapsules (LLNCs). Thus, an anti-HER2-FITC antibody (αHER2) has been used, HER2 being a surface receptor that is overexpressed in several tumor cells. Subsequently, the in vitro formation of a PC has been developed using fetal bovine serum supplemented with human fibrinogen. Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA), Laser Doppler Electrophoresis (LDE), and Gel Chromatography techniques have been used to assure a complete physico-chemical characterization of the nano-complexes with (LLNCs-αHER2-PC) and without (LLNCs-αHER2) the surrounding PC. In addition, cellular assays were performed to study the cellular uptake and the specific cellular-nanocarrier interactions using the SKBR3 (high expression of HER2) breast cancer cell line and human dermal fibroblasts (HDFa) (healthy cell line without expression of HER2 receptors as control), showing that the SKBR3 cell line had a higher transport rate (50-fold) than HDFa at 60 min with LLNCs-αHER2. Moreover, the SKBR3 cell line incubated with LLNCs-αHER2-PC suffered a significant reduction (40%) in the uptake. These results suggest that the formation of a PC onto LLNCs does not prevent specific cell targeting, although it does have an important influence on cell uptake.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/química , Receptor ErbB-2/metabolismo , Anticorpos , Células MCF-7 , Lipídeos , Nanopartículas/química
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806197

RESUMO

Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.


Assuntos
Vesículas Extracelulares , Parasitos , Trypanosoma cruzi , Animais , Vesículas Extracelulares/metabolismo , Glicoproteínas , Microscopia de Força Atômica , Neuraminidase/metabolismo , Parasitos/metabolismo , Trypanosoma cruzi/metabolismo
3.
Pharmaceutics ; 14(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214119

RESUMO

Nanomedicine against cancer, including diagnosis, prevention and treatment, has increased expectations for the solution of many biomedical challenges in the fight against this disease. In recent decades, an exhaustive design of nanosystems with high specificity, sensitivity and selectivity has been achieved due to a rigorous control over their physicochemical properties and an understanding of the nano-bio interface. However, despite the considerable progress that has been reached in this field, there are still different hurdles that limit the clinical application of these nanosystems, which, along with their possible solutions, have been reviewed in this work. Specifically, physiological processes as biological barriers and protein corona formation related to the administration routes, designing strategies to overcome these obstacles, promising new multifunctional nanotherapeutics, and recent clinical trials are presented in this review.

4.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502358

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant vascular dysplasia characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM) in the visceral organs. The diagnosis of HHT is based on clinical Curaçao criteria, which show limited sensitivity in children and young patients. Here, we carried out a liquid biopsy by which we isolated total RNA from plasma exosome samples. A cohort of 15 HHT type 1 patients, 15 HHT type 2 patients, and 10 healthy relatives were analyzed. Upon gene expression data processing and normalization, a statistical analysis was performed to explore similarities in microRNA expression patterns among samples and detect differentially expressed microRNAs between HHT samples and the control group. We found a disease-associated molecular fingerprint of 35 miRNAs over-represented in HHT vs. controls, with eight being specific for HHT1 and 11 for HHT2; we also found 30 under-represented, including nine distinct for HHT1 and nine for HHT2. The analysis of the receiver operating characteristic (ROC) curves showed that eight miRNAs had good (AUC > 75%) or excellent (AUC > 90%) diagnosis value for HHT and even for type HHT1 and HHT2. In addition, we identified the cellular origin of these miRNAs among the cell types involved in the vascular malformations. Interestingly, we found that only some of them were incorporated into exosomes, which suggests a key functional role of these exosomal miRNAs in the pathophysiology of HHT.


Assuntos
Exossomos/genética , MicroRNAs/genética , Telangiectasia Hemorrágica Hereditária/genética , Antígenos CD/genética , Malformações Arteriovenosas/genética , Estudos de Coortes , Endoglina/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Genótipo , Humanos , Biópsia Líquida , MicroRNAs/sangue , Mutação , Fenótipo , Telangiectasia Hemorrágica Hereditária/metabolismo , Transcriptoma/genética
5.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068436

RESUMO

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote's EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.


Assuntos
Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Estágios do Ciclo de Vida , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/parasitologia , Chlorocebus aethiops , Vesículas Extracelulares/parasitologia , Interações Hospedeiro-Parasita , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteoma/análise , Células Vero
6.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008363

RESUMO

Here, the role of non-invasive biomarkers in liquid biopsy was evaluated, mainly in exosomes and mitochondrial DNA (mtDNA) as promising, novel, and stable biomarkers for renal cell carcinoma (RCC). A total of 140 fractions (named from B to F) obtained by ultracentrifugations of whole blood samples from 28 individuals (13 patients and 15 controls) were included. Nanoparticle Tracking Analysis (NTA) was conducted to characterized exosomal fraction. Subsequently, an analysis of digital PCR (dPCR) using the QuantStudio™ 3D Digital PCR platform was performed and the quantification of mtDNA copy number by QuantStudioTM 12K Flex Real-Time PCR System (qPCR) was developed. Moreover, Next Generation Sequencing (NGS) analyses were included using MiSeq system (Illumina, San Diego, CA, USA). An F fraction, which contains all exosome data and all mitochondrial markers, was identified in dPCR and qPCR with statistically significant power (adjusted p values ≤ 0.03) when comparing cases and controls. Moreover, present analysis in mtDNA showed a relevant significance in RCC aggressiveness. To sum up, this is the first time a relation between exosomal mtDNA markers and clinical management of RCC is analyzed. We suggest a promising strategy for future liquid biopsy RCC analysis, although more analysis should be performed prior to application in routine clinical practice.

7.
Pharmaceutics ; 11(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382552

RESUMO

Nanoparticles (NPs) based on the polymer poly (lactide-co-glycolide) acid (PLGA) have been widely studied in developing delivery systems for drugs and therapeutic biomolecules, due to the biocompatible and biodegradable properties of the PLGA. In this work, a synthesis method for bone morphogenetic protein (BMP-2)-loaded PLGA NPs was developed and optimized, in order to carry out and control the release of BMP-2, based on the double-emulsion (water/oil/water, W/O/W) solvent evaporation technique. The polymeric surfactant Pluronic F68 was used in the synthesis procedure, as it is known to have an effect on the reduction of the size of the NPs, the enhancement of their stability, and the protection of the encapsulated biomolecule. Spherical solid polymeric NPs were synthesized, showing a reproducible multimodal size distribution, with diameters between 100 and 500 nm. This size range appears to allow the protein to act on the cell surface and at the cytoplasm level. The effect of carrying BMP-2 co-adsorbed with bovine serum albumin on the NP surface was analyzed. The colloidal properties of these systems (morphology by SEM, hydrodynamic size, electrophoretic mobility, temporal stability, protein encapsulation, and short-term release profile) were studied. The effect of both BMP2-loaded NPs on the proliferation, migration, and osteogenic differentiation of mesenchymal stromal cells from human alveolar bone (ABSC) was also analyzed in vitro.

8.
Colloids Surf B Biointerfaces ; 173: 295-302, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308454

RESUMO

HYPOTHESIS: The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. EXPERIMENTS: We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. FINDINGS: The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.


Assuntos
Clorofórmio/química , Portadores de Fármacos/química , Muramidase/química , Nanopartículas/química , Poloxâmero/química , Água/química , Animais , Galinhas , Clara de Ovo/química , Emulsões , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície , Tensão Superficial
9.
Bioconjug Chem ; 29(8): 2561-2575, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29953208

RESUMO

Polymer-based nanotheranostics are appealing tools for cancer treatment and diagnosis in the fast-growing field of nanomedicine. A straightforward preparation of novel engineered PEI-based nanotheranostics incorporating NIR fluorescence heptamethine cyanine dyes (NIRF-HC) to enable them with tumor targeted gene delivery capabilities is reported. Branched PEI-2 kDa (b2kPEI) is conjugated with IR-780 and IR-783 dyes by both covalent and noncovalent simple preparative methodologies varying their stoichiometry ratio. The as-prepared set of PEI-NIR-HC nanocarriers are assayed in vitro and in vivo to evaluate their gene transfection efficiency, cellular uptake, cytotoxicity, internalization and trafficking mechanisms, subcellular distribution, and tumor specific gene delivery. The results show the validity of the approach particularly for one of the covalent IR783-b2kPEI conjugates that exhibit an enhanced tumor uptake, probably mediated by organic anion transporting peptides, and favorable intracellular transport to the nucleus. The compound behaves as an efficient nanotheranostic transfection agent in NSG mice bearing melanoma G361 xenographs with concomitant imaging signal and gene concentration in the targeted tumor. By this way, advanced nanotheranostics with multifunctional capabilities (gene delivery, tumor-specific targeting, and NIR fluorescence imaging) are generated in which the NIRF-HC dye component accounts for simultaneous targeting and diagnostics, avoiding additional incorporation of additional tumor-specific targeting bioligands.


Assuntos
Carbocianinas/administração & dosagem , Nanomedicina , Polietilenoimina/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Nanomedicina Teranóstica , Animais , Linhagem Celular , Fluorescência , Técnicas de Transferência de Genes , Camundongos
10.
Colloids Surf B Biointerfaces ; 159: 586-595, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854415

RESUMO

Because of the biocompatible and biodegradable properties of poly (lactic-co-glycolic acid) (PLGA), nanoparticles (NPs) based on this polymer have been widely studied for drug/biomolecule delivery and long-term sustained-release. In this work, two different formulation methods for lysozyme-loaded PLGA NPs have been developed and optimized based on the double-emulsion (water/oil/water, W/O/W) solvent evaporation technique. They differ mainly in the phase in which the surfactant (Pluronic® F68) is added: water (W-F68) and oil (O-F68). The colloidal properties of these systems (morphology by SEM and STEM, hydrodynamic size by DLS and NTA, electrophoretic mobility, temporal stability in different media, protein encapsulation, release, and bioactivity) have been analyzed. The interaction surfactant-protein depending on the formulation procedure has been characterized by surface tension and dilatational rheology. Finally, cellular uptake by human mesenchymal stromal cells and cytotoxicity for both systems have been analyzed. Spherical hard NPs are made by the two methods However, in one case, they are monodisperse with diameters of around 120nm (O-F68), and in the other case, a polydisperse system of NPs with diameters between 100 and 500nm is found (W-F68). Protein encapsulation efficiency, release and bioactivity are maintained better by the W-F68 formulation method. This multimodal system is found to be a promising "dual delivery" system for encapsulating hydrophilic proteins with strong biological activity at the cell-surface and cytoplasmic levels.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Humanos , Ácido Láctico/química , Células-Tronco Mesenquimais/metabolismo , Poloxâmero/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Chem Asian J ; 11(23): 3365-3375, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27685032

RESUMO

A novel one-pot method for the synthesis of polyethyleneimine (PEI)-coated gold nanoparticles (AuPEI-NPs) that combines the reductant-stabilizer properties of PEI with microwave irradiation starting from hydrogen tetrachloroaurate acid (HAuCl4 ) and branched PEI 25 kDa (b25kPEI) was explored. The method was straightforward, green, and low costing, for which the Au/PEI ratio (1:1 to 1:128 w/w) was a key parameter to modulate their capabilities as DNA delivery nanocarriers. Transfection assays in CHO-k1 cells demonstrated that AuPEI-NPs with 1:16 and 1:32 w/w ratios behaved as effective DNA gene vectors with improved transfection efficiencies (twofold) and significantly lower toxicity than unmodified b25kPEI and Lipofectamine 2000. The transfection mediated by these AuPEI-NP-DNA polyplexes preferentially used the caveolae-mediated route for intracellular internalization, as shown by studies performed by using specific internalization inhibitors as well as colocalization with markers of clathrin- and caveolae-dependent pathways. The AuPEI-NP polyplexes preferentially used the more efficient caveolae internalization pathway to promote transfection, a fact that supports their higher transfection efficiency relative to that of Lipofectamine 2000. In addition, intracellular trafficking of the AuPEI-NPs was studied by transmission electron microscopy.


Assuntos
DNA/metabolismo , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Animais , Células CHO , Cavéolas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , DNA/química , Portadores de Fármacos/toxicidade , Difusão Dinâmica da Luz , Vetores Genéticos/metabolismo , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Espectrofotometria Ultravioleta , Transfecção
12.
Bioconjug Chem ; 27(3): 549-61, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26841323

RESUMO

Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.


Assuntos
Ácido Cítrico/química , Eletrólitos/química , Polietilenoimina/química , Transfecção , Linhagem Celular , Humanos , Técnicas In Vitro , Peso Molecular
13.
Biomed Res Int ; 2015: 415289, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509156

RESUMO

Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.


Assuntos
Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea , Osso e Ossos/efeitos dos fármacos , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Diferenciação Celular , Proliferação de Células , Coloides/química , Portadores de Fármacos/química , Terapia Genética/métodos , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Solventes/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Colloids Surf B Biointerfaces ; 133: 339-46, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125487

RESUMO

Designing nanocarriers for gene delivery is a multidisciplinary challenge that involves not only DNA condensation with biocompatible polymers, but also DNA-release processes. Once the genetic material is introduced into the cell, the rupture of degradable bonds permits the unpacking and release of the load. In this work, a dual-degradable polycation - composed by a linear poly(ß-amino ester) chain in which ester and disulfide bonds coexist - has been used to condense a DNA plasmid. The goal was to reinforce the spontaneous hydrolysis of the ester groups with the intracellular break-up of the disulfide bonds, since these reducible bonds are degraded in the reductive intracellular environment. For a comparative study, two poly(ß-amino ester) molecules differing only in the presence (or absence) of some SS bonds have been tested. DNA condensation, physico-chemical characterization of the polyplexes formed, and degradation studies have been carried out at pH 5 and pH 7. The acidic conditions gave the best nanoparticles, due to a better solubilization of both polymers and to a higher stability of the ester bonds. Despite the synthesis and storage of polyplexes were much more appropriate at pH 5, transfection efficiency in HeLa cells was similar irrespective the original pH used. Only in those polyplexes formed at low polymer:DNA ratios (i.e. 5 and 10 (w/w)) was transfection more effective when the plasmid was condensed at an acidic pH. With regard to the DNA-release efficiency in the intracellular medium, degradation of the polymers was practically governed by the rapid hydrolysis of the ester groups, this spontaneous and rapid process masking, unfortunately, any potential contribution associated with the breakup of the disulfide bonds.


Assuntos
DNA/química , Polímeros/química , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Humanos
15.
Colloids Surf B Biointerfaces ; 126: 374-80, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25601090

RESUMO

Two degradable poly(ß-amino ester)s with an average molecular weight of 2kDa, referred to as B1 and B2, have been synthesized to be tested as non-viral gene delivery systems. B2 polymer exhibits two additional non-polar ethyl groups at both ends. This paper describes the influence of that subtle difference on the compaction ability and temporal stability of the complexes formed with plasmid DNA. Our results suggest that the inclusion of those small hydrophobic fragments into the polycation backbone improves its suitability as synthetic DNA carrier. The improvement is related to the formation and physicochemical properties of the complexes. B2 polyplexes were more stable, the polymer hydrolysis was slowed down and plasmid DNA was better protected which was translated into better transfection efficiencies. Although still not totally understood, the role played by hydrophobic forces is ubiquitous in chemical, biological and physical systems, and they must be considered to design future polymers for gene delivery.


Assuntos
DNA/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Coloides/química , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Humanos , Plasmídeos , Polímeros/síntese química , Células Tumorais Cultivadas
16.
Langmuir ; 29(8): 2520-9, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23383723

RESUMO

Pluronics are being introduced in food research in order to delay lipid digestion, with the length of hydrophilic and hydrophobic chains playing an important role in the rate of such a process. Since bile salts play a crucial role in the lipid digestion process, the aim of this work is to analyze the interactions between Pluronic F127 or F68 and the bile salt NaTDC when the latter is added at physiological concentrations. These interactions are studied at the Pluronic-covered oil-water interface and in the aqueous phase of Pluronic-stabilized emulsions. This work has been carried out with techniques such as differential scanning calorimetry, interfacial tension, dilatational rheology, and scanning electron microscopy. As a result, Pluronic F127 was shown to be more resistant to displacement by bile salt than F68 at the oil-water interface due to the larger steric hindrance and interfacial coverage provided. In addition, Pluronics have the ability to compete for the oil-water interface and interact in the bulk with the bile salt. Concretely, Pluronic F127 seems to interact with more molecules of bile salt in the bulk, thus hindering their adsorption onto the oil-water interface. As a conclusion, Pluronic F127 affects to a larger extent the ability of bile salt to promote the further cascade of lipolysis in the presence of lipase owing to a combination of interfacial and bulk events.


Assuntos
Ácidos e Sais Biliares/química , Óleos/química , Poloxâmero/química , Emulsões/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
17.
Acta Biomater ; 7(2): 771-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20807595

RESUMO

Development of new biomaterials is a constant in regenerative medicine. A biomaterial's surface properties, such as wettability, roughness, surface energy, surface charge, chemical functionalities and composition, are determinants of cell adhesion and subsequent tissue behavior. Thus, the main aim of this study was to analyze the correlation between changes in wettability without topographical variation and the response of osteoblast-like cells. For this purpose oxidized silicon surfaces were methylated to different degrees. Additionally, the influence of nanoroughness, and the subsequent effect of hysteresis on cell behavior, was also analyzed. In this case oxidized silicon pieces were etched with caustic solutions to produce different degrees of nanoroughness. Axisymmetric drop-shape analysis and atomic force microscopy confirmed that the proposed surface treatments increased the nanometer roughness and/or the water contact angles. MG-63 osteoblast-like cells were cultured on the altered surfaces to study proliferation, and for ultrastructural analysis and immunocytochemical characterization. Increasing the nanometer surface roughness or water contact angle enhanced osteoblast behavior in terms of cell morphology, proliferation and immunophenotype, the effect provoked by methylation being more significant than that caused by nanoroughness.


Assuntos
Teste de Materiais , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Silício/farmacologia , Molhabilidade/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Contagem de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Imunofenotipagem , Microscopia de Força Atômica , Osteoblastos/imunologia , Osteoblastos/ultraestrutura , Propriedades de Superfície/efeitos dos fármacos , Fatores de Tempo , Água/química
18.
Small ; 5(12): 1366-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19507183

RESUMO

The investigation of micro- and nanoscale droplets on solid surfaces offers a wide range of research opportunities both at a fundamental and an applied level. On the fundamental side, advances in the techniques for production and imaging of such ultrasmall droplets will allow wetting theories to be tested down to the nanometer scale, where they predict the significant influence of phenomena such as the contact line tension or evaporation, which can be neglected in the case of macroscopic droplets. On the applied side, these advances will pave the way for characterizing a diverse set of industrially important materials such as textile or biomedical micro- and nanofibers, powdered solids, and topographically or chemically nanopatterned surfaces, as well as micro-and nanoscale devices, with relevance in diverse industries from biomedical to petroleum engineering. Here, the basic principles of wetting at the micro- and nanoscales are presented, and the essential characteristics of the main experimental techniques available for producing and imaging these droplets are described. In addition, the main fundamental and applied results are reviewed. The most problematic aspects of studying such ultrasmall droplets, and the developments that are in progress that are thought to circumvent them in the coming years, are highlighted.


Assuntos
Imageamento Tridimensional/métodos , Tamanho da Partícula , Pesquisa , Água/química , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...