Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Dev ; : e12486, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783650

RESUMO

Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.

2.
PeerJ ; 11: e15985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692111

RESUMO

Background: Lake Þingvallavatn in Iceland, a part of the river Ölfusá drainage basin, was presumably populated by brown trout soon after it formed at the end of the last Ice Age. The genetic relatedness of the brown trout in Þingvallavatn to other populations in the Ölfusá drainage basin is unknown. After the building of a dam at the outlet of the lake in 1959 brown trout catches declined, though numbers have now increased. The aim of this study was to assess effects of geographic isolation and potential downstream gene flow on the genetic structure and diversity in brown trout sampled in several locations in the western side of the watershed of River Ölfusá. We hypothesized that brown trout in Lake Þingvallavatn constituted several local spawning populations connected by occasional gene flow before the damming of the lake. We also estimated the effective population size (NE) of some of these populations and tested for signs of a recent population bottleneck in Lake Þingvallavatn. Methods: We sampled brown trout inhabiting four lakes and 12 rivers within and near the watershed of River Ölfusá by means of electro- and net- fishing. After stringent data filtering, 2,597 polymorphic loci obtained from ddRADseq data from 317 individuals were ascertained as putative neutral markers. Results: Overall, the genetic relatedness of brown trout in the Ölfusá watershed reflected the connectivity and topography of the waterways. Ancestry proportion analyses and a phylogenetic tree revealed seven distinct clusters, some of which corresponded to small populations with reduced genetic diversity. There was no evidence of downstream gene flow from Lake Þingvallavatn, although gene flow was observed from much smaller mountain populations. Most locations showed low NE values (i.e., ~14.6 on average) while the putative anadromous trout from River Sog and the spawning population from River Öxará, that flows into Lake Þingvallavatn, showed notably higher NE values (i.e., 71.2 and 56.5, respectively). No signals of recent population bottlenecks were detected in the brown trout of Lake Þingvallavatn. Discussion: This is the first time that the genetic structure and diversity of brown trout in the watershed of River Ölfusá have been assessed. Our results point towards the presence of a metapopulation in the watershed of Lake Þingvallavatn, which has been influenced by restoration efforts and is now dominated by a genetic component originated in River Öxará. Many of the locations studied represent different populations. Those that are isolated in headwater streams and lakes are genetically distinct presenting low genetic diversity, yet they can be important in increasing the genetic variation in downstream populations. These populations should be considered for conservation and direct management.


Assuntos
Drenagem , Estruturas Genéticas , Islândia , Filogenia , Densidade Demográfica
3.
Ecol Evol ; 12(10): e9427, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36267683

RESUMO

Maternal effects have the potential to alter early developmental processes of offspring and contribute to adaptive diversification. Egg size is a major contributor to offspring phenotype, which can influence developmental trajectories and potential resource use. However, to what extent intraspecific variation in egg size facilitates evolution of resource polymorphism is poorly understood. We studied multiple resource morphs of Icelandic Arctic charr, ranging from an anadromous morph-with a phenotype similar to the proposed ancestral phenotype-to sympatric morphs that vary in their degree of phenotypic divergence from the ancestral anadromous morph. We characterized variation in egg size and tested whether egg size influenced offspring phenotype at early life stages (i.e., timing of- and size at- hatching and first feeding [FF]). We predicted that egg size would differ among morphs and be less variable as morphs diverge away from the ancestral anadromous phenotype. We also predicted that egg size would correlate with offspring size and developmental timing. We found morphs had different egg size, developmental timing, and size at hatching and FF. Egg size increased as phenotypic proximity to the ancestral anadromous phenotype decreased, with larger eggs generally giving rise to larger offspring, especially at FF, but egg size had no effect on developmental rate. The interaction between egg size and the environment may have a profound impact on offspring fitness, where the resulting differences in early life-history traits may act to initiate and/or maintain resource morphs diversification.

4.
Mol Ecol ; 31(18): 4739-4761, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848921

RESUMO

Changes in DNA methylation in specific coding or non-coding regions can influence development and potentially divergence in traits within species and groups. While the impact of epigenetic variation on developmental pathways associated with evolutionary divergence is the focus of intense investigation, few studies have looked at recently diverged systems. Phenotypic diversity between closely related populations of Arctic charr (Salvelinus alpinus), which diverged within the last 10,000 years, offers an interesting ecological model to address such effects. Using bisulphite sequencing, we studied general DNA methylation patterns during development in the four sympatric morphs of Arctic charr from Lake Thingvallavatn. The data revealed strong differences between developmental timepoints and between morphs (mainly along the benthic-limnetic axis), both at single CpG sites and in 1000 bp-regions. Genes located close to differentially methylated CpG sites were involved in nucleosome assembly, regulation of osteoclast differentiation, and cell-matrix adhesion. Differentially methylated regions were enriched in tRNA and rRNA sequences, and half of them were located close to transcription start sites. The expression of 14 genes showing methylation differences over time or between morphs was further investigated by qPCR and nine of these were found to be differentially expressed between morphs. Four genes (ARHGEF37-like, H3-like, MPP3 and MEGF9) showed a correlation between methylation and expression. Lastly, histone gene clusters displayed interesting methylation differences between timepoints and morphs, as well as intragenic methylation variation. The results presented here provide a motivation for further studies on the contribution of epigenetic traits, such as DNA methylation, to phenotypic diversity and developmental mechanisms.


Assuntos
Metilação de DNA , Truta , Animais , Evolução Biológica , Metilação de DNA/genética , Fenótipo , Simpatria , Truta/genética
5.
Ecol Evol ; 11(6): 2616-2629, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767824

RESUMO

Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation-by-distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome-wide association studies.

6.
BMC Dev Biol ; 20(1): 21, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106153

RESUMO

BACKGROUND: Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression. RESULTS: Craniofacial shape (i.e. the Meckel's cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel's cartilage in comparison to smaller offspring. CONCLUSIONS: This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Crânio/crescimento & desenvolvimento , Truta/crescimento & desenvolvimento , Animais , Ossos Faciais/crescimento & desenvolvimento , Comportamento Alimentar , Expressão Gênica , Herança Materna , Osteogênese/genética , Fenótipo , Truta/genética
7.
Ecol Evol ; 9(19): 10964-10983, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641448

RESUMO

The availability of diverse ecological niches can promote adaptation of trophic specializations and related traits, as has been repeatedly observed in evolutionary radiations of freshwater fish. The role of genetics, environment, and history in ecologically driven divergence and adaptation, can be studied on adaptive radiations or populations showing ecological polymorphism. Salmonids, especially the Salvelinus genus, are renowned for both phenotypic diversity and polymorphism. Arctic charr (Salvelinus alpinus) invaded Icelandic streams during the glacial retreat (about 10,000 years ago) and exhibits many instances of sympatric polymorphism. Particularly, well studied are the four morphs in Lake Þingvallavatn in Iceland. The small benthic (SB), large benthic (LB), planktivorous (PL), and piscivorous (PI) charr differ in many regards, including size, form, and life history traits. To investigate relatedness and genomic differentiation between morphs, we identified variable sites from RNA-sequencing data from three of those morphs and verified 22 variants in population samples. The data reveal genetic differences between the morphs, with the two benthic morphs being more similar and the PL-charr more genetically different. The markers with high differentiation map to all linkage groups, suggesting ancient and pervasive genetic separation of these three morphs. Furthermore, GO analyses suggest differences in collagen metabolism, odontogenesis, and sensory systems between PL-charr and the benthic morphs. Genotyping in population samples from all four morphs confirms the genetic separation and indicates that the PI-charr are less genetically distinct than the other three morphs. The genetic separation of the other three morphs indicates certain degree of reproductive isolation. The extent of gene flow between the morphs and the nature of reproductive barriers between them remain to be elucidated.

8.
Evol Dev ; 21(1): 16-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30474913

RESUMO

Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life-stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non-linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life-stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.


Assuntos
Expressão Gênica , Osteogênese , Truta/crescimento & desenvolvimento , Truta/genética , Animais , Tamanho Corporal , Feminino , Masculino , Herança Materna , RNA Mensageiro/análise
9.
Ecol Evol ; 8(9): 4552-4563, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760896

RESUMO

Geographical patterns in morphology can be the result of divergence among populations due to neutral or selective changes and/or phenotypic plasticity in response to different environments. Marine gastropods are ideal subjects on which to explore these patterns, by virtue of the remarkable intraspecific variation in life-history traits and morphology often observed across relatively small spatial scales. The ubiquitous N-Atlantic common whelk (Buccinum undatum) is well known for spatial variation in life-history traits and morphology. Previous studies on genetic population structure have revealed that it exhibits significant differentiation across geographic distances. Within Breiðafjörður Bay, a large and shallow bay in W-Iceland, genetic differentiation was demonstrated between whelks from sites separated by just 20 km. Here, we extended our previous studies on the common whelk in Breiðafjörður Bay by quantifying phenotypic variation in shell morphology and color throughout the Bay. We sought to test whether trait differentiation is dependent on geographic distance and/or environmental variability. Whelk in Breiðafjörður Bay displayed fine-scale patterns of spatial variation in shape, thickness, and color diversity. Differentiation increased with increasing distance between populations, indicating that population connectivity is limited. Both shape and color varied along a gradient from the inner part of the bay in the east to the outer part in the west. Whelk shells in the innermost part of Breiðafjörður Bay were thick with an elongate shell, round aperture, and low color diversity, whereas in the outer part of the bay the shells were thinner, rounder, with a more elongate aperture and richer color diversity. Significant site-specific difference in shell traits of the common whelk in correlation with environmental variables indicates the presence of local ecotypes and limited demographic connectivity.

10.
Fish Shellfish Immunol ; 72: 247-258, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29108970

RESUMO

Maintaining fish health is one of the most important aims in aquaculture. Prevention of fish diseases therefore is crucial and can be achieved by various different strategies, including most often a combination of different methods such as optimal feed and fish density, as well as strengthening the immune system. Understanding the fish innate immune system and developing methods to activate it, in an effort to prevent infections in the first place, has been a goal in recent years. In this study we choose different inducers of the innate immune system and examined their effects in vitro on the salmon cell line CHSE-214. We found that the butyrate derivatives 4-phenyl butyrate (PBA) and ß-hydroxy-ß-methyl butyrate (HMB) induce the expression of various innate immune genes differentially over 24-72 h. Similarly, lipids generated from fish oils were found to have an effect on the expression of the antimicrobial peptides cathelicidin and hepcidin, as well as iNOS and the viral receptor RIG-1. Interestingly we found that vitamin D3, similar as in mammals, was able to increase cathelicidin expression in fish cells. The observed induction of these different innate immune factors correlated with antibacterial activity against Aeromonas salmonicida and antiviral activity against IPNV and ISAV in vitro. To relate this data to the in vivo situation we examined cathelicidin expression in juvenile salmon and found that salmon families vary greatly in their basal cathelicidin levels. Examining cathelicidin levels in families known to be resistant to IPNV showed that these QTL-families had lower basal levels of cathelicidin in gills, than non QTL-families. Feeding fish with HMB caused a robust increase in cathelicidin expression in gills, but not skin and this was independent of the fish being resistant to IPNV. These findings support the use of fish cell lines as a tool to develop new inducers of the fish innate immune system, but also highlight the importance of the tissue studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata , Salmo salar/genética , Salmo salar/imunologia , Aeromonas salmonicida/fisiologia , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Linhagem Celular , Colecalciferol/administração & dosagem , Colecalciferol/metabolismo , Furunculose/imunologia , Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Vírus da Necrose Pancreática Infecciosa/fisiologia , Lipídeos/administração & dosagem , Fenilbutiratos/administração & dosagem , Fenilbutiratos/metabolismo , Valeratos/administração & dosagem , Valeratos/metabolismo
11.
PeerJ ; 4: e1878, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069811

RESUMO

The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-ß estradiol (E 2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E 2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E 2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E 2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E 2 during larval head development.

12.
Evodevo ; 6: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388986

RESUMO

BACKGROUND: The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence. RESULTS: To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species. Out of 20 genes identified, 7 showed lower gene expression in benthic than in limnetic charr morphs. We had previously identified a conserved gene network involved in extracellular matrix (ECM) organization and skeletogenesis, showing higher expression in developing craniofacial elements of benthic than in limnetic Arctic charr morphs. The present study adds a second set of genes constituting an expanded gene network with strong, benthic-limnetic differential expression. To identify putative upstream regulators, we performed knowledge-based motif enrichment analyses on the regulatory sequences of the identified genes which yielded potential binding sites for a set of known transcription factors (TFs). Of the 8 TFs that we examined using qPCR, two (Ahr2b and Ap2) were found to be differentially expressed between benthic and limnetic charr. Expression analysis of several known AhR targets indicated higher activity of the AhR pathway during craniofacial development in benthic charr morphotypes. CONCLUSION: These results suggest a key role of the aryl hydrocarbon receptor (AhR) pathway in the observed craniofacial differences between distinct charr morphotypes.

13.
Dev Dyn ; 244(9): 1168-1178, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150089

RESUMO

BACKGROUND: The impressive diversity in the feeding apparatus often seen among related fish species clearly reflects differences in feeding modes and habitat utilization. Such variation can also be found within species. One example of such intraspecific diversity is the Arctic charr in Lake Thingvallavatn, where four distinct morphs coexist: two limnetic, with evenly protruding jaws, and two benthic, with subterminal lower jaws. We used these recently evolved morphs to study the role of ontogenetic variation in shaping craniofacial diversity. RESULTS: The segmental development of the pharyngeal arches and the order of events in craniofacial development is the same as has been described for teleosts, emphasizing the conserved nature of this process. However, our morphometric analyses reveal differences between morphs. Hatching is accompanied by increase in size and allometric shape changes in Arctic charr. Ontogenetic trajectories of craniofacial shape also differ significantly between morphs. CONCLUSIONS: The results point to hatching as a significant developmental event in Arctic charr and possibly other fishes. Also, the developmental origins of limnetic and benthic specializations in the craniofacial elements of Arctic charr may stem from events around hatching. This calls for investigations of the mechanisms and consequences of hatching, in the context of development and evolution. Developmental Dynamics 244:1168-1178, 2015. © 2015 Wiley Periodicals, Inc.

14.
F1000Res ; 4: 136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27635217

RESUMO

Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr Salvelinus alpinus populations in Iceland.   To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including lysozyme and natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.

15.
Evodevo ; 5(1): 40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419450

RESUMO

BACKGROUND: Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). RESULTS: Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. CONCLUSION: Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

16.
PLoS One ; 9(8): e106084, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170615

RESUMO

Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Truta/genética , Animais , Aquicultura/métodos , Regiões Árticas , Análise por Conglomerados , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , MicroRNAs/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Fatores de Tempo , Truta/embriologia , Truta/crescimento & desenvolvimento
17.
Eukaryot Cell ; 13(8): 1064-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879126

RESUMO

Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.


Assuntos
Adenilil Ciclases/metabolismo , Flagelos/enzimologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Adenilil Ciclases/genética , Animais , Linhagem Celular , Insetos/parasitologia , Estágios do Ciclo de Vida , Transporte Proteico , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento
18.
PLoS One ; 8(6): e66389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785496

RESUMO

Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos of different Arctic charr morphotypes.


Assuntos
Organogênese/genética , Transcriptoma , Truta/embriologia , Truta/genética , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Truta/crescimento & desenvolvimento
19.
Fungal Biol ; 116(7): 802-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22749167

RESUMO

Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.


Assuntos
Ascomicetos/genética , Genoma Mitocondrial , Filogenia , Ascomicetos/classificação , Códon , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas Fúngicas/genética , Ordem dos Genes , Metagenoma , Dados de Sequência Molecular , RNA de Transferência/genética , Análise de Sequência de DNA , Sintenia , Transcrição Gênica
20.
Science ; 337(6091): 195-9, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22678362

RESUMO

Instability of the nuclear genome is a hallmark of cancer and aging. MMS19 protein has been linked to maintenance of genomic integrity, but the molecular basis of this connection is unknown. Here, we identify MMS19 as a member of the cytosolic iron-sulfur protein assembly (CIA) machinery. MMS19 functions as part of the CIA targeting complex that specifically interacts with and facilitates iron-sulfur cluster insertion into apoproteins involved in methionine biosynthesis, DNA replication, DNA repair, and telomere maintenance. MMS19 thus serves as an adapter between early-acting CIA components and a subset of cellular iron-sulfur proteins. The function of MMS19 in the maturation of crucial components of DNA metabolism may explain the sensitivity of MMS19 mutants to DNA damage and the presence of extended telomeres.


Assuntos
DNA Fúngico/metabolismo , DNA/metabolismo , Instabilidade Genômica , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Células HeLa , Humanos , Imunoprecipitação , Ferro/metabolismo , Metalochaperonas/metabolismo , Metaloproteínas , Metionina/biossíntese , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteômica , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...