Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274648

RESUMO

This work aims to determine how the nematic twist-bend phase (NTB) of bismesogens containing two rigid parts of cyanobiphenyls connected with a linking chain containing n = 7, 9, and 11 methylene groups behaves in mixtures with structurally similar cyanobiphenyls nCB, n = 4-12, 14. The whole phase diagrams are presented for the CB7CB-nCB system. For the other systems, CB9CB-nCB and CB11CB-nCB, only curves corresponding to NTB-N phase transition are presented. Based on the temperature-concentration range of the existence of NTB phase, it was established that an increase in the alkyl chain length of CBnCB causes an increase in the stability of the NTB phase. But surprisingly, an increase in the alkyl chain length of nCB compounds does not change the slope of the NTB-N equilibrium line on phase diagrams. It is slightly bigger when the nCB compound has the same length of alkyl chain as the length of the linking group of a bismesogen. XRD studies were carried out for two mixtures.

2.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068105

RESUMO

The thermal stability of the grain structure and mechanical properties of the high-entropy two-phase TiCoCrFeMn alloy produced by powder metallurgy, assessed based on microhardness measurements, was analyzed in this work. For this purpose, material obtained via sintering using the U-FAST method was subjected to long-term heating at a temperature of 1000 °C for up to 1000 h in an argon atmosphere. For homogenization times of 1, 10, 20, 50, 100, and 1000 h, grain size changes in the identified phase components of the matrix were assessed, and microhardness measurements were conducted using the Vickers method. It has been shown that the changes in the analyzed parameters are closely correlated with non-monotonic modifications in the chemical composition. It was found that the tested alloy achieved structural stability after 100 h of annealing. A stable grain size was obtained in the BCC solid solution of approximately 2 µm and the two-phase BCC+C14 mixture of roughly 0.4 µm. Long-term heating for up to 1000 h caused the grain structure to grow to 2.7 µm and 0.7 µm, respectively, with a simultaneous decrease in hardness from 1065 HV to 1000 HV. The chromium and titanium diffusion coefficient values responsible for forming the BCC solid solution and the Laves C14 phase, including the material matrix, were also determined at this level to be DCr = 1.28 × 10-19 (m2·s-1) and DTi = 1.04 × 10-19 (m2·s-1), demonstrating the sluggish diffusion effect typical of high-entropy alloys.

3.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687636

RESUMO

This paper presents an analysis of the causes of damage and fragmentation to the high-pressure turbine (HTP) disc of the RD-33 engine mounted in the MIG-29 aircraft. The authors have carried out an analysis of the changes to the structure of the disc material, both in the areas containing cracks and in the undamaged areas. The impact of structural changes on the alterations in the analysed strength properties along the disc radius was assessed. Material tests were correlated with the analysis of the recorded engine parameters, indicating potential causes of the HPT disc fragmentation.

4.
Materials (Basel) ; 15(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431367

RESUMO

The article presents the use of the modified pulse method (MPM) to determine the temperature characteristics of the thermal diffusivity of alloy 718. The experiment was carried out in the temperature range of 20-900 °C during the double heating of the sample with an interval of two weeks. The results of our own research showed a good correlation in the temperature range of 300-500 °C, during the first heating of the sample, with the recommended changes in thermal diffusivity by NPL & ASM and data from the MPDB database. On the other hand, clear deviations in the results occurred in the range of temperature changes up to about 300 °C, most likely responsible for the electron component of the conductivity of this alloy, and in the range above 700 °C, where there is a clear minimum that may be caused by the δ phase precipitation phenomenon.

5.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576509

RESUMO

High-entropy alloys (HEA) are a group of modern, perspective materials that have been intensively developed in recent years due to their superior properties and potential applications in many fields. The complexity of their chemical composition and the further interactions of main elements significantly inhibit the prediction of phases that may form during material processing. Thus, at the design stage of HEA fabrication, the molecular orbitals theory was proposed. In this method, the connection of the average strength of covalent bonding between the alloying elements (Bo parameter) and the average energy level of the d-orbital (parameter Md) enables for a preliminary assessment of the phase structure and the type of lattice for individual components in the formed alloy. The designed TiCoCrFeMn alloy was produced by the powder metallurgy method, preceded by mechanical alloying of the initial elementary powders and at the temperature of 1050 °C for 60 s. An ultra-fine-grained structured alloy was homogenized at 1000 °C for 1000 h. The X-ray diffraction and scanning electron microscopy analysis confirmed the correctness of the methodology proposed as the assumed phase structure consisted of the body-centered cubic (BCC) solid solution and the C14 Laves phase was obtained.

6.
Materials (Basel) ; 14(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440784

RESUMO

The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.

7.
Materials (Basel) ; 13(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883042

RESUMO

In this paper, aluminide coatings of various thicknesses and microstructural uniformity obtained using chemical vapor deposition (CVD) were studied in detail. The optimized CVD process parameters of 1040 °C for 12 h in a protective hydrogen atmosphere enabled the production of high density and porosity-free aluminide coatings. These coatings were characterized by beneficial mechanical features including thermal stability, wear resistance and good adhesion strength to MAR 247 nickel superalloy substrate. The microstructure of the coating was characterized through scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Mechanical properties and wear resistance of aluminide coatings were examined using microhardness, scratch test and standardized wear tests, respectively. Intermetallic phases from the Ni-Al system at specific thicknesses (20-30 µm), and the chemical and phase composition were successfully evaluated at optimized CVD process parameters. The optimization of the CVD process was verified to offer high performance coating properties including improved heat, adhesion and abrasion resistance.

8.
Materials (Basel) ; 13(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756421

RESUMO

This paper presents the possibility of using a modified-pulse method (MPM) determining the temperature characteristics of thermal diffusivity in order to identify phase transformations in metals. The experiment and attempt of phase identification were conducted for the Fe65Ni35 alloy in the 20-500 °C temperature range during both sample heating and cooling. The estimated error of discrete thermal diffusivity measurements was less than 3%. The method allows us to narrow down the averaging of the interval of this value, as a function of temperature, in the range below 1 K. Recently published analysis of the phase diagrams of Fe-Ni alloys, and the results of the authors' own research into the Fe65Ni35 alloy, showed very good correlation between changes occurring when heating the alloy and the equilibrium diagram provided by Cacciamani G., Dinsdale A., Palumbo M., and Pasturel A. (Intermetallics 18, 2010, 1148-1162) showing the position of phases with a crystal-lattice structure based on the face-centered cubic (FCC) cell.

9.
Materials (Basel) ; 13(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585925

RESUMO

In this paper, experimental verification of the microstructural evolution model during sintering of aluminum, iron and particulate mullite ceramic powders using self-propagated high-temperature synthesis (SHS) was performed. The powder mixture with 20% wt. content of reinforcing ceramic was investigated throughout this research. The mixed powders were cold pressed and sintered in a vacuum at 1030 °C. The SHS reaction between sintered feed powders resulted in a rapid temperature increase from the heat generated. The temperature increase led to the melting of an aluminum-based metallic liquid. The metallic liquid infiltrated the porous SiO2 ceramics. Silicon atoms were transited into the intermetallic iron-aluminum matrix. Subsequently, a ternary matrix from the Fe-Al-Si system was formed, and synthesis of the oxygen and aluminum occurred. Synthesis of both these elements resulted in formation of new, fine Al2O3 precipitates in the volume of matrix. The proposed microstructural evolution model for growth of ultra-fine Al2O3 oxides from SiO2 silica ceramic decomposition during SHS was successfully verified through scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS) analysis and X-ray diffraction (XRD).

10.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575000

RESUMO

The structural and optical evolution of the ZnS thin films prepared by atomic layer deposition (ALD) from the diethylzinc (DEZ) and 1,5-pentanedithiol (PDT) as zinc and sulfur precursors was studied. A deposited ZnS layer (of about 60 nm) is amorphous, with a significant S excess. After annealing, the stoichiometry improved for annealing temperatures ≥400 °C and annealing time ≥2 h, and 1:1 stoichiometry was obtained when annealed at 500 °C for 4 h. ZnS crystallized into small crystallites (1-7 nm) with cubic sphalerite structure, which remained stable under the applied annealing conditions. The size of the crystallites (D) tended to decrease with annealing temperature, in agreement with the EDS data (decreased content of both S and Zn with annealing temperature); the D for samples annealed at 600 °C (for the time ≤2 h) was always the smallest. Both reflectivity and ellipsometric spectra showed characteristics typical for quantum confinement (distinct dips/peaks in UV spectral region). It can thus be concluded that the amorphous ZnS layer obtained at a relatively low temperature (150 °C) from organic S precursor transformed into the layers built of small ZnS nanocrystals of cubic structure after annealing at a temperature range of 300-600 °C under Ar atmosphere.

11.
Materials (Basel) ; 8(3): 914-931, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28787979

RESUMO

Fe-Al intermetallic alloys with aluminum content over 60 at% are in the area of the phase equilibrium diagram that is considerably less investigated in comparison to the high-symmetry Fe3Al and FeAl phases. Ambiguous crystallographic information and incoherent data referring to the phase equilibrium diagrams placed in a high-aluminum range have caused confusions and misinformation. Nowadays unequivocal material properties description of FeAl2, Fe2Al5 and FeAl3 intermetallic alloys is still incomplete. In this paper, the influence of aluminum content and processing parameters on phase composition is presented. The occurrence of low-symmetry FeAl2, Fe2Al5 and FeAl3 structures determined by chemical composition and phase transformations was defined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) examinations. These results served to verify diffraction investigations (XRD) and to explain the mechanical properties of cast materials such as: hardness, Young's modulus and fracture toughness evaluated using the nano-indentation technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA