Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 501-508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778100

RESUMO

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.


Assuntos
Colina , Etanolamina , Proteínas de Membrana Transportadoras , Humanos , Sítios de Ligação , Transporte Biológico , Cátions/química , Cátions/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Colina/metabolismo , Colina/química , Etanolamina/metabolismo , Etanolamina/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Conformação Proteica , Receptores Virais/metabolismo , Receptores Virais/química , Especificidade por Substrato , Triptofano/metabolismo , Triptofano/química , Tirosina/metabolismo , Tirosina/química , Mutação
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873041

RESUMO

The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.


Assuntos
Grupo dos Citocromos b/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Oxirredutases/metabolismo , Grupo dos Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Oxirredutases/genética , Conformação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA