Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(22): 15123-15135, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34739213

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic and bioavailable components found in petroleum and represent a high risk to aquatic organisms. The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other planar aromatic hydrocarbons, including certain PAHs. Ahr acts as a xenosensor and modulates the transcription of biotransformation genes in vertebrates, such as cytochrome P450 1A (cyp1a). Atlantic cod (Gadus morhua) possesses two Ahr proteins, Ahr1a and Ahr2a, which diverge in their primary structure, tissue-specific expression, ligand affinities, and transactivation profiles. Here, a luciferase reporter gene assay was used to assess the sensitivity of the Atlantic cod Ahrs to 31 polycyclic aromatic compounds (PACs), including two- to five-ring native PAHs, a sulfur-containing heterocyclic PAC, as well as several methylated, methoxylated, and hydroxylated congeners. Notably, most parent compounds, including naphthalene, phenanthrene, and partly, chrysene, did not act as agonists for the Ahrs, while hydroxylated and/or alkylated versions of these PAHs were potent agonists. Importantly, the greater potencies of substituted PAH derivatives and their ubiquitous occurrence in nature emphasize that more knowledge on the toxicity of these environmentally and toxicologically relevant compounds is imperative.


Assuntos
Gadus morhua , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Animais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA