Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675171

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.

2.
Viruses ; 15(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140675

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 (ß-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying ß-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1ß, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates ß-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.


Assuntos
Vírus da Hepatite Murina , Pneumonia , Camundongos , Humanos , Animais , Vitamina D , Pandemias/prevenção & controle , Vírus da Hepatite Murina/fisiologia , SARS-CoV-2 , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Dieta
3.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896826

RESUMO

Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.


Assuntos
COVID-19 , Inibidores de Lipoxigenase , Humanos , Camundongos , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão , Camundongos Transgênicos , Imunidade Inata , Redução de Peso , Modelos Animais de Doenças
4.
Int Immunopharmacol ; 122: 110609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429145

RESUMO

We recently demonstrated that clindamycin exhibits activities in acute and chronic models of pain and inflammation. In the present study, we investigated the effects of clindamycin and a clindamycin acetylated derivative (CAD) in models of acute joint inflammation and in a microbiological assay. Joint inflammation was induced in mice by intraarticular (i.a.) injection of zymosan or lipopolysaccharide (LPS). Clindamycin or CAD were administered via the intraperitoneal route 1 h before zymosan or LPS. Paw withdrawal threshold, joint diameter, histological changes, neutrophil recruitment, tumor necrosis factor-α (TNF-α) production and phosphorylation of the IκBα and NF-κB/p65 were evaluated. In vitro assays were used to measure the antibacterial activity of clindamycin and CAD and also their effects on zymosan-induced TNF-α production by RAW264.7 macrophages. Clindamycin exhibited activity against Staphylococcus aureus and Salmonella Typhimurium ATCC® strains at much lower concentrations than CAD. Intraarticular injection of zymosan or LPS induced articular hyperalgesia, edema and neutrophil infiltration in the joints. Zymosan also induced histological changes, NF-κB activation and TNF-α production. Responses induced by zymosan and LPS were inhibited by clindamycin (200 and 400 mg/kg) or CAD (436 mg/kg). Both clindamycin and CAD inhibited in vitro TNF-α production by macrophages. In summary, we provided additional insights of the clindamycin immunomodulatory effects, whose mechanism was associated with NF-κB inhibition and reduced TNF-α production. Such effects were extended to a clindamycin derivative with reduced antibacterial activity, indicating that clindamycin derivatives should be investigated as candidates to drugs that could be useful in the management of inflammatory and painful conditions.


Assuntos
Artrite , NF-kappa B , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Clindamicina/uso terapêutico , Clindamicina/farmacologia , Infiltração de Neutrófilos , Zimosan , Lipopolissacarídeos/farmacologia , Inflamação/induzido quimicamente , Antibacterianos/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico
5.
Life Sci ; 324: 121750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142087

RESUMO

AIMS: Millions of people died during the COVID-19 pandemic, but the vast majority of infected individuals survived. Now, some consequences of the disease, known as long COVID, are been revealed. Although the respiratory system is the target of Sars-CoV-2, COVID-19 can influence other parts of the body, including bone. The aim of this work was to investigate the impact of acute coronavirus infection in bone metabolism. MAIN METHODS: We evaluated RANKL/OPG levels in serum samples of patients with and without acute COVID-19. In vitro, the effects of coronavirus in osteoclasts and osteoblasts were investigated. In vivo, we evaluated the bone phenotype in a BSL2 mouse model of SARS-like disease induced by murine coronavirus (MHV-3). KEY FINDINGS: Patients with acute COVID-19 presented decreased OPG and increased RANKL/OPG ratio in the serum versus healthy individuals. In vitro, MHV-3 infected macrophages and osteoclasts, increasing their differentiation and TNF release. Oppositely, osteoblasts were not infected. In vivo, MHV-3 lung infection triggered bone resorption in the femur of mice, increasing the number of osteoclasts at 3dpi and decreasing at 5dpi. Indeed, apoptotic-caspase-3+ cells have been detected in the femur after infection as well as viral RNA. RANKL/OPG ratio and TNF levels also increased in the femur after infection. Accordingly, the bone phenotype of TNFRp55-/- mice infected with MHV-3 showed no signs of bone resorption or increase in the number of osteoclasts. SIGNIFICANCE: Coronavirus induces an osteoporotic phenotype in mice dependent on TNF and on macrophage/osteoclast infection.


Assuntos
Reabsorção Óssea , COVID-19 , Animais , Humanos , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , COVID-19/metabolismo , Osteoblastos , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Pandemias , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Ligante RANK/metabolismo , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo
6.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36526272

RESUMO

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Assuntos
COVID-19 , Sepse , Humanos , Camundongos , Animais , Oseltamivir/efeitos adversos , Zanamivir/efeitos adversos , Neuraminidase/metabolismo , Neuraminidase/farmacologia , Neutrófilos , Metaloproteinase 9 da Matriz/metabolismo , Espécies Reativas de Oxigênio , Lipopolissacarídeos/farmacologia , Sepse/induzido quimicamente
7.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078125

RESUMO

Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.


Assuntos
Febre de Chikungunya , Inflamação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Artralgia , Febre de Chikungunya/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo
8.
bioRxiv ; 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33200130

RESUMO

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

9.
Immunology ; 165(3): 355-368, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964126

RESUMO

Mucositis is a major clinical complication associated with cancer treatment and may limit the benefit of chemotherapy. Leukocytes and inflammatory mediators have been extensively associated with mucositis severity. However, the role of eosinophils in the pathophysiology of chemotherapy-induced mucositis remains to be elucidated. Here, using GATA-1-deficient mice, we investigated the role of eosinophils in intestinal mucositis. There was marked accumulation of eosinophils in mice given irinotecan and eosinophil ablation inhibited intestinal mucositis. Treatment with Evasin-4, a chemokine receptor antagonist, reduced the recruitment of eosinophils and decreased irinotecan-induced mucositis. Importantly, Evasin-4 did not interfere negatively with the antitumour effects of irinotecan. Evasin-4 was of benefit for mice given high doses of irinotecan once Evasin-4-treated mice presented delayed mortality. Altogether, our findings suggest that Evasin-4 may have significant mucosal-protective effects in the context of antineoplastic chemotherapy and may, therefore, be useful in combination with anticancer treatment in cancer patients.


Assuntos
Antineoplásicos , Mucosite , Animais , Antineoplásicos/uso terapêutico , Camptotecina/efeitos adversos , Eosinófilos/patologia , Humanos , Mucosa Intestinal/patologia , Irinotecano/efeitos adversos , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia
10.
Immunology ; 164(2): 305-317, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002852

RESUMO

Gout is an inflammatory disease triggered by deposition of monosodium urate (MSU) crystals in the joints, resulting in high neutrophil influx and pain. Here, we studied the role of the inhibitory receptor CD300a in the resolution process in a murine model of gout. We found increased CD300a expression on neutrophils emigrated to the joint. When compared to WT mice, CD300a-/- mice had persistent neutrophil influx till 24 hr after MSU injection. This was associated with increased concentration of IL-1ß and greater tissue damage in the joints of CD300a-/- mice. There was an increase in the percentage of apoptotic neutrophils in the synovial lavage of WT mice, as compared to CD300a-/- mice. This difference was reflected in the decline of efferocytic events in the synovial cavity of CD300a-/- mice 24 hr after MSU injection. A CD300a agonistic antibody was shown, for the first time, to increase apoptosis of human neutrophils, and this was associated with cleavage of caspase-8. In conclusion, our results reveal an important role of CD300a in the control of leucocyte infiltration, IL-1ß production and caspase-8 cleavage in neutrophils, contributing to the resolution of inflammation triggered by MSU injection.


Assuntos
Antígenos CD/imunologia , Apoptose/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Ácido Úrico/imunologia , Animais , Células Cultivadas , Gota/imunologia , Humanos , Interleucina-1beta/imunologia , Articulações/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
11.
Bone ; 145: 115842, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422700

RESUMO

OBJECTIVES: This study aimed to evaluate the involvement of Angiotensin II (Ang II) in joint lesions associated with osteoarthritis (OA) in vitro and in vivo. METHODS: Chondrocyte cultures were obtained from knee joints of neonatal rats and stimulated with Ang II/MIA/ACE inhibitors. In vivo, rats treated or not with the ACE inhibitor captopril, received daily injections of Ang II or sodium monoiodoacetate (MIA) in knee joints for evaluation of cartilage, bone, and synovial lesions. RESULTS: Cultured chondrocytes expressed the mRNA for Ace, Agtr1, Agtr2, and Mas1. Stimulating cells with Ang II reduced chondrocyte viability and metabolism. Accordingly, in vivo Ang II injection into the knees of rats triggered hyperalgesia, joint edema, increased the number of leukocytes in the joint cavity, and induced cartilage lesions associated with OA alterations. In further experiments, Ang II synthesis was prevented with the ACE inhibitor Captopril in the context of MIA-induced OA. Ang II inhibition with captopril improved the OARSI score, induced chondroprotection, and reduced the leukocyte recruitment from synovium after MIA. Additionally, captopril prevented MIA-induced bone resorption, by decreasing the number of osteoclasts and increasing the expression of IL-10 in the bone. In vitro, inhibiting Ang II synthesis decreased MIA-induced chondrocyte death and increased Col2a1 transcription. CONCLUSION: Ang II induces chondrocyte death and joint tissue damages associated with OA and its modulation can be a therapeutic strategy in osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Angiotensina II , Animais , Condrócitos , Articulação do Joelho , Osteoartrite/tratamento farmacológico , Osteoartrite do Joelho/tratamento farmacológico , Proto-Oncogene Mas , Ratos
12.
Biomed Pharmacother ; 134: 111109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341050

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.


Assuntos
Fabaceae , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Tripanossomicidas/farmacologia , Administração Tópica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Quimioterapia Combinada , Emulsões , Fabaceae/química , Feminino , Interações Hospedeiro-Parasita , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Antimoniato de Meglumina/farmacologia , Mesocricetus , Camundongos Endogâmicos BALB C , Nanopartículas , Carga Parasitária , Extratos Vegetais/isolamento & purificação , Pele/parasitologia , Pele/patologia , Tripanossomicidas/isolamento & purificação
13.
FASEB J ; 34(9): 11498-11510, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741032

RESUMO

Staphylococcus aureus is the main cause of septic arthritis in humans, a disease associated with high morbidity and mortality. Inflammation triggered in response to infection is fundamental to control bacterial growth but may cause permanent tissue damage. Here, we evaluated the role of Lipoxin A4 (LXA4 ) in S aureus-induced arthritis in mice. Septic arthritis was induced by S aureus injection into tibiofemoral joints. At different time points, we evaluated cell recruitment and bacterial load in the joint, the production of pro-inflammatory molecules, and LXA4 in inflamed tissue and analyzed joint damage and dysfunction. LXA4 was investigated using genetically modified mice or by pharmacological blockade of its synthesis and receptor. CD11c+ cells were evaluated in lymph nodes by confocal microscopy and flow cytometry and dendritic cell chemotaxis using the Boyden chamber. Absence or pharmacological blockade of 5-lipoxygenase (5-LO) reduced joint inflammation and dysfunction and was associated with better control of infection at 4 to 7 days after the infection. There was an increase in LXA4 in joints of S aureus-infected mice and administration of LXA4 reversed the phenotype in 5-LO-/- mice. Blockade or absence of the LXA4 receptor FPR2 has a phenotype similar to 5-LO-/- mice. Mechanistically, LXA4 appeared to control migration and function of dendritic cells, cells shown to be crucial for adequate protective responses in the model. Thus, after the first days of infection when symptoms become evident therapies that inhibit LXA4 synthesis or action could be useful for treatment of S aureus-induced arthritis.


Assuntos
Artrite Infecciosa/complicações , Articulações/efeitos dos fármacos , Lipoxinas/farmacologia , Infecções Estafilocócicas/complicações , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Artrite Infecciosa/microbiologia , Células Cultivadas , Humanos , Articulações/microbiologia , Articulações/patologia , Lipoxinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
14.
Bone ; 140: 115538, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730926

RESUMO

Suppressor of cytokine signaling (SOCS) proteins are significant regulators of cellular immune responses. Therefore, the role of SOCS in bone-inflammatory disorders, including arthritis and periodontitis, has been investigated in experimental and clinical conditions. Recent evidence shows that SOCS proteins are expressed in major bone-related cells, including osteoblasts, osteoclasts, chondrocytes and synoviocytes, although their direct role in these cells is not fully described. These signaling molecules, especially SOCS1, 2 and 3, were shown to play critical roles in the control of bone resorption associated to inflammation. This review focuses on the involvement of SOCS proteins in inflammatory bone remodeling, including their direct and indirect role in the control of osteoclast hyperactivation, during arthritis and periodontitis. The description of the roles of SOCS proteins in inflammatory bone diseases highlights the pathways involved in the pathophysiology of these conditions and, thus, may contribute to the development and improvement of potential therapeutic interventions.


Assuntos
Doenças Ósseas , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina , Animais , Citocinas , Humanos , Osteoclastos/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo
15.
Antiviral Res ; 180: 104855, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574688

RESUMO

Zika virus (ZIKV) has gained a lot of attention in the past few years due to its rapid spread worldwide and its close association to severe neurological outcomes, such as microcephaly and Guillain-Barre syndrome. In this study, the in vitro and in vivo anti-ZIKV activity of 7-deaza-7-fluoro-2'-C-methyl-adenosine (DFMA) was evaluated. In vitro, using primary mouse neuronal cells and human neural stem cells infected by ZIKV, treatment with DFMA resulted in impaired viral replication and protection against virus-induced cell death. In vivo, when administrated prior to infection, DFMA prevented lethality and markedly reduced viral loads and neuroinflammation, including microgliosis and overall brain damage. Additionally, as an early therapeutic treatment, DFMA increased survival rates in mice. Collectively, these findings demonstrate that the nucleoside analog DFMA inhibits ZIKV infection and viral-induced neuroinflammation in vitro and in vivo without apparent untoward effects, suggesting it may be useful in individuals infected with ZIKV.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Inflamação/virologia , Doenças do Sistema Nervoso/virologia , Infecção por Zika virus/complicações , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Antivirais/uso terapêutico , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Culicidae/citologia , Humanos , Inflamação/tratamento farmacológico , Camundongos , Doenças do Sistema Nervoso/tratamento farmacológico , Células-Tronco Neurais , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus , Infecção por Zika virus/tratamento farmacológico
16.
FASEB J ; 34(2): 2749-2764, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908042

RESUMO

Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.


Assuntos
Anexina A1/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Receptores de Formil Peptídeo/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Receptores de Lipoxinas/metabolismo , Streptococcus pneumoniae/metabolismo
17.
Sci Rep ; 9(1): 19085, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836766

RESUMO

Toll-like receptor 9 (TLR9) and Phosphatidylinositol-3-kinase gamma (PI3Kγ) are very important effectors of the immune response, however, the importance of such crosstalk for disease development is still a matter of discussion. Here we show that PI3Kγ is required for immune responses in which TLR9 is a relevant trigger. We demonstrate the requirement of PI3Kγ for TLR9-induced inflammation in a model of CpG-induced pleurisy. Such requirement was further observed in inflammatory models where DNA sensing via TLR9 contributes to disease, such as silicosis and drug-induced liver injury. Using adoptive transfer, we demonstrate that PI3Kγ is important not only in leukocytes but also in parenchymal cells for the progression of inflammation. We demonstrate this crosstalk between TLR9 and PI3Kγ in vitro using human PBMCs. The inhibition of PI3Kγ in CpG-stimulated PBMCs resulted in reduction of both cytokine production and phosphorylated Akt. Therefore, drugs that target PI3Kγ have the potential to treat diseases mediated by excessive TLR9 signalling.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Inflamação/patologia , Especificidade de Órgãos , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Deleção de Genes , Inflamação/enzimologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Pulmão/enzimologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Pleura/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício , Tiazolidinedionas/farmacologia
18.
J Leukoc Biol ; 106(3): 619-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392775

RESUMO

This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1ß production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.


Assuntos
Artrite Gotosa/enzimologia , Artrite Gotosa/imunologia , Caspase 1/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Infiltração de Neutrófilos , Doença Aguda , Animais , Adesão Celular , Movimento Celular , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Citoplasma/metabolismo , Ativação Enzimática , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Articulações/patologia , Leucotrieno B4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neutrófilos/metabolismo , Nociceptividade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/irrigação sanguínea , Ácido Úrico
19.
J Leukoc Biol ; 106(4): 957-966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107994

RESUMO

CD300a is an inhibitory immunoreceptor expressed in lymphoid and myeloid cells. This study evaluates whether CD300a plays a role in the control of joint inflammation in a model of Ag-induced arthritis (AIA) in mice. CD300a was found to be expressed mostly on neutrophils and its expression was enhanced on neutrophils that migrated to the inflamed synovial cavity. Joint inflammation, as characterized by neutrophil accumulation, was significantly greater in CD300a KO (CD300a-/- ) mice subjected to AIA, as compared to WT mice. This was associated with joint dysfunction, as measured by lower mechanical nociception threshold. There was greater production of the chemokine CXCL1 and the cytokine IL-6 in joints of CD300a-/- mice. In vitro, Mϕs from CD300a-/- mice released higher concentrations of CXCL1 and IL-6 in response to LPS. Splenocytes from immunized CD300a-/- mice produced increased levels of IFN-γ and IL-17 and lower levels of IL-10 when challenged with Ag than cells from WT mice. Neutrophils lacking the CD300a gene had greater chemotactic activity in response to fMLP, CXCL1, and LTB4 than WT neutrophils. In conclusion, these results reveal that the absence of CD300a promotes exacerbation of inflammation in a model of Ag-induced arthritis, suggesting that CD300a is an important receptor for negatively controlling the inflammatory response in this model. Mechanistically, CD300a seems to regulate the activity of various immune cells types involved in the process, including neutrophils, Mϕs, and lymphocytes.


Assuntos
Antígenos/efeitos adversos , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Inflamação/patologia , Receptores Imunológicos/metabolismo , Animais , Anticorpos/metabolismo , Artrite Experimental/patologia , Quimiotaxia , Citocinas/biossíntese , Progressão da Doença , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos , Neutrófilos/patologia , Nociceptividade , Dor/complicações , Dor/patologia , Baço/patologia , Membrana Sinovial/patologia , Fatores de Tempo
20.
EBioMedicine ; 44: 516-529, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130472

RESUMO

BACKGROUND: Zika virus (ZIKV) infection during pregnancy may cause major congenital defects, including microcephaly, ocular, articular and muscle abnormalities, which are collectively defined as Congenital Zika Syndrome. Here, we performed an in-depth characterization of the effects of congenital ZIKV infection (CZI) in immunocompetent mice. METHODS: Pregnant dams were inoculated with ZIKV on embryonic day 5.5 in the presence or absence of a sub-neutralizing dose of a pan-flavivirus monoclonal antibody (4G2) to evaluate the potential role of antibody-dependent enhancement phenomenon (ADE) during short and long outcomes of CZI. FINDINGS: ZIKV infection induced maternal immune activation (MIA), which was associated with occurrence of foetal abnormalities and death. Therapeutic administration of AH-D antiviral peptide during the early stages of pregnancy prevented ZIKV replication and death of offspring. In the post-natal period, CZI was associated with a decrease in whole brain volume, ophthalmologic abnormalities, changes in testicular morphology, and disruption in bone microarchitecture. Some alterations were enhanced in the presence of 4G2 antibody. INTERPRETATION: Our results reveal that early maternal ZIKV infection causes several birth defects in immunocompetent mice, which can be potentiated by ADE phenomenon and are associated with MIA. Additionally, antiviral treatment with AH-D peptide may be beneficial during early maternal ZIKV infection. FUND: This work was supported by the Brazilian National Science Council (CNPq, Brazil), Minas Gerais Foundation for Science (FAPEMIG), Funding Authority for Studies and Projects (FINEP), Coordination of Superior Level Staff Improvement (CAPES), National Research Foundation of Singapore and Centre for Precision Biology at Nanyang Technological University.


Assuntos
Anticorpos Facilitadores/imunologia , Interações Hospedeiro-Patógeno/imunologia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Peptídeos/farmacologia , Gravidez , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Baço/virologia , Síndrome , Resultado do Tratamento , Carga Viral , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...