Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667248

RESUMO

The load-adaptive behavior of the muscles in the human musculoskeletal system offers great potential for minimizing resource and energy requirements in many technical systems, especially in drive technology and robotics. However, the lack of knowledge about suitable technical linear actuators that can reproduce the load-adaptive behavior of biological muscles in technology is a major reason for the lack of successful implementation of this biological principle. In this paper, therefore, the different types of linear actuators are investigated. The focus is particularly on artificial muscles and rope pulls. The study is based on literature, on the one hand, and on two physical demonstrators in the form of articulated robots, on the other hand. The studies show that ropes are currently the best way to imitate the load-adaptive behavior of the biological model in technology. This is especially illustrated in the context of this paper by the discussion of different advantages and disadvantages of the technical linear actuators, where ropes, among other things, have a good mechanical and control behavior, which is very advantageous for use in an adaptive system. Finally, the next steps for future research are outlined to conclude how ropes can be used as linear actuators to transfer load-adaptive lightweight design into technical applications.

2.
RNA ; 29(8): 1255-1273, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37192814

RESUMO

Ribosomal RNA (rRNA) maturation in archaea is a complex multistep process that requires well-defined endo- and exoribonuclease activities to generate fully mature linear rRNAs. However, technical challenges prevented detailed mapping of rRNA processing steps and a systematic analysis of rRNA maturation pathways across the tree of life. In this study, we used long-read (PCR)-cDNA and direct RNA nanopore-based sequencing to study rRNA maturation in three archaeal model organisms, namely the Euryarchaea Haloferax volcanii and Pyrococcus furiosus and the Crenarchaeon Sulfolobus acidocaldarius Compared to standard short-read protocols, nanopore sequencing facilitates simultaneous readout of 5'- and 3'-positions, which is required for the classification of rRNA processing intermediates. More specifically, we (i) accurately detect and describe rRNA maturation stages by analysis of terminal read positions of cDNA reads and thereupon (ii) explore the stage-dependent installation of the KsgA-mediated dimethylations in H. volcanii using base-calling and signal characteristics of direct RNA reads. Due to the single-molecule sequencing capacity of nanopore sequencing, we could detect hitherto unknown intermediates with high confidence, revealing details about the maturation of archaea-specific circular rRNA intermediates. Taken together, our study delineates common principles and unique features of rRNA processing in euryarchaeal and crenarchaeal representatives, thereby significantly expanding our understanding of rRNA maturation pathways in archaea.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , RNA Ribossômico/genética , RNA , Archaea/genética , DNA Complementar , Análise de Sequência de RNA
3.
Methods Mol Biol ; 2533: 3-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796979

RESUMO

Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.


Assuntos
RNA Ribossômico , Ribossomos , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
4.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275997

RESUMO

Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.


Assuntos
Archaea , Genoma Arqueal , Archaea/genética , Evolução Biológica , Eucariotos/genética , Filogenia , Ribossomos/genética
5.
Methods Mol Biol ; 2106: 193-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889259

RESUMO

RNA structural conformation and dynamics govern the functional properties of all RNA/RNP. Accordingly, defining changes of RNA structure and dynamics in various conditions may provide detailed insight into how RNA structural properties regulate the function of RNA/RNP. Traditional chemical footprinting analysis using chemical modifiers allows to sample the dynamics and conformation landscape of diverse RNA/RNP. However, many chemical modifiers are limited in their capacity to provide unbiased information reflecting the in vivo RNA/RNP structural landscape. In the recent years, the development of selective-2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology that uses powerful new chemical modifiers has significantly improved in vitro and in vivo structural probing of secondary and tertiary interactions of diverse RNA species at the single nucleotide level.Although the original discovery of Archaea as an independent domain of life is intimately linked to the technological development of RNA analysis, our understanding of in vivo RNA structural conformation and dynamics in this domain of life remains scarce.This protocol describes the in vivo use of SHAPE chemistry in two evolutionary divergent model Archaea, Sulfolobus acidocaldarius and Haloferax volcanii.


Assuntos
Proteínas Arqueais/metabolismo , Técnicas de Sonda Molecular , Dobramento de RNA , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Archaea/química , Archaea/genética , Proteínas Arqueais/química , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/química
6.
Nucleic Acids Res ; 48(4): 2073-2090, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31828323

RESUMO

General molecular principles of ribosome biogenesis have been well explored in bacteria and eukaryotes. Collectively, these studies have revealed important functional differences and few similarities between these processes. Phylogenetic studies suggest that the information processing machineries from archaea and eukaryotes are evolutionary more closely related than their bacterial counterparts. These observations raise the question of how ribosome synthesis in archaea may proceed in vivo. In this study, we describe a versatile plasmid-based cis-acting reporter system allowing to analyze in vivo the consequences of ribosomal RNA mutations in the model archaeon Haloferax volcanii. Applying this system, we provide evidence that the bulge-helix-bulge motif enclosed within the ribosomal RNA processing stems is required for the formation of archaeal-specific circular-pre-rRNA intermediates and mature rRNAs. In addition, we have collected evidences suggesting functional coordination of the early steps of ribosome synthesis in H. volcanii. Together our investigation describes a versatile platform allowing to generate and functionally analyze the fate of diverse rRNA variants, thereby paving the way to better understand the cis-acting molecular determinants necessary for archaeal ribosome synthesis, maturation, stability and function.


Assuntos
Redes Reguladoras de Genes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Ribossomos/genética , Haloferax volcanii/genética , Mutação/genética , Filogenia , Precursores de RNA/genética , Estabilidade de RNA/genética , RNA Arqueal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA