Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 16(1): 306, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919772

RESUMO

INTRODUCTION: Dysregulation in the secretion of adipokines or adipocytokines plays a significant role in triggering a pro-inflammatory state, leading to endothelial dysfunction and insulin resistance, and ultimately elevating the risk of atherosclerosis and coronary artery disease (CAD). Previous studies have shown a link between NOV/CCN3 (an adipokine) and obesity, insulin resistance, and inflammation. However, no research has explored the relationship between CCN3 serum levels and CAD. Therefore, we conducted the first investigation to examine the correlation between CCN3 and CAD risk factors in patients. METHODS: In a case-control study, we measured the serum levels of CCN3, IL-6, adiponectin, and TNF-α in 88 angiography-confirmed CAD patients and 88 control individuals using ELISA kits. Additionally, we used an auto analyzer and commercial kits to measure the biochemical parameters. RESULTS: In patients with CAD, the serum levels of CCN3, TNF-α, and IL-6 were significantly higher compared to the control group, whereas lower levels of adiponectin were observed in the CAD group (P < 0.0001). A positive correlation was found between CCN3 and IL-6 and TNF-α in the CAD group ([r = 0.38, P < 0.0001], [r = 0.39, P < 0.0001], respectively). A binary logistic regression analysis showed the risk of CAD in the model adjusted (OR [95% CI] = 1.29 [1.19 - 1.41]), (P < 0.0001). We determined a cut-off value of CCN3 (3169.6 pg/mL) to distinguish CAD patients from the control group, with good sensitivity and specificity obtained for this finding (83.8% and 87.5%, respectively). CONCLUSION: This study provides evidence of a positive association between CCN3 serum levels and CAD, as well as inflammation markers such as IL-6 and TNF-α. These findings suggest that CCN3 may serve as a potential biomarker for CAD, and further investigations are necessary to validate this association and explore its potential use in clinical settings.


Assuntos
Doença da Artéria Coronariana , Resistência à Insulina , Humanos , Doença da Artéria Coronariana/diagnóstico , Fator de Necrose Tumoral alfa , Interleucina-6 , Adiponectina , Estudos de Casos e Controles , Adipocinas , Inflamação
2.
ACS Appl Bio Mater ; 5(2): 873-880, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050590

RESUMO

The design of sensitive and cost-effective biocomposite materials with high catalytic activity for the effective electrooxidation of glucose plays a key role in developing enzyme-free glucose sensors. The porous three-dimensional (3D) spongin scaffold of marine sponge origin provides an excellent template for the growth of atacamite crystals and improves the activity of atacamite as a catalyst. By using the design of experiment method, the influence of different parameters on the electrode efficiency was optimized. The optimized sensor based on spongin-atacamite showed distinguished performance toward glucose with two linear ranges of 0.4-200 µM and 0.2-10 mM and high sensitivities of 3908.4 and 600.5 µA mM-1 cm-2, respectively. Importantly, the designed sensor exhibited strong selectivity and favorable stability, reproducibility, and repeatability. The performance in the real application was estimated by glucose detection in spiked human blood serum samples, which verified its great potential as a reliable platform for enzyme-free glucose sensing.


Assuntos
Cobre , Técnicas Eletroquímicas , Cloretos , Cobre/química , Técnicas Eletroquímicas/métodos , Glucose , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 21(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406759

RESUMO

Molecularly imprinted polymers have emerged as cost-effective and rugged artificial selective sorbents for combination with different sensors. In this study, quaternary ammonium cations, as functional monomers, were systematically evaluated to design imprinted polymers for glyphosate as an important model compound for electrically charged and highly water-soluble chemical compounds. To this aim, a small pool of monomers were used including (3-acrylamidopropyl)trimethylammonium chloride, [2-(acryloyloxy)ethyl]trimethylammonium chloride, and diallyldimethylammonium chloride. The simultaneous interactions between three positively charged monomers and glyphosate were preliminary evaluated using statistical design of the experiment method. Afterwards, different polymers were synthesized at the gold surface of the quartz crystal microbalance sensor using optimized and not optimized glyphosate-monomers ratios. All synthesized polymers were characterized using atomic force microscopy, contact angle, Fourier-transform infrared, and X-ray photoelectron spectroscopy. Evaluated functional monomers showed promise as highly efficient functional monomers, when they are used together and at the optimized ratio, as predicted by the statistical method. Obtained results from the modified sensors were used to develop a simple model describing the binding characteristics at the surface of the different synthesized polymers. This model helps to develop new synthesis strategies for rational design of the highly selective imprinted polymers and to use as a sensing platform for water soluble and polar targets.

4.
Bioengineering (Basel) ; 7(4)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066421

RESUMO

With the growing demands for bone implant therapy, titanium (Ti) and its alloys are considered as appropriate choices for the load-bearing bone implant substitutes. However, the interaction of bare Ti-based implants with the tissues is critical to the success of the implants for long-term stability. Thus, surface modifications of Ti implants with biocompatible hydroxyapatite (HAp) coatings before implantation is important and gained interest. Sol-gel is a potential technique for deposition the biocompatible HAp and has many advantages over other methods. Therefore, this review strives to provide widespread overview on the recent development of sol-gel HAp deposition on Ti. This study shows that sol-gel technique was able to produce uniform and homogenous HAp coatings and identified the role of surface pretreatment of Ti substrate, optimizing the sol-gel parameters, substitution, and reinforcement of HAp on improving the coating properties. Critical factors that influence on the characteristics of the deposited sol-gel HAp films as corrosion resistance, adhesion to substrate, bioactivity, morphological, and structural properties are discussed. The review also highlights the critical issues, the most significant challenges, and the areas requiring further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA