Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16641-16652, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494599

RESUMO

In response to the growing need for efficient processing of temporal information, neuromorphic computing systems are placing increased emphasis on the switching dynamics of memristors. While the switching dynamics can be regulated by the properties of input signals, the ability of controlling it via electrolyte properties of a memristor is essential to further enrich the switching states and improve data processing capability. This study presents the synthesis of mesoporous silica (mSiO2) films using a sol-gel process, which enables the creation of films with controllable porosities. These films can serve as electrolyte layers in the diffusive memristors and lead to tunable neuromorphic switching dynamics. The mSiO2 memristors demonstrate short-term plasticity, which is essential for temporal signal processing. As porosity increases, discernible changes in operating currents, facilitation ratios, and relaxation times are observed. The underlying mechanism of such systematic control was investigated and attributed to the modulation of hydrogen-bonded networks within the porous structure of the silica layer, which significantly influences both anodic oxidation and ion migration processes during switching events. The result of this work presents mesoporous silica as a unique platform for precise control of neuromorphic switching dynamics in diffusive memristors.

2.
ACS Appl Nano Mater ; 5(12): 17711-17720, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36583121

RESUMO

We report on the development of hybrid organic-inorganic material-based flexible memristor devices made by a fast and simple electrochemical fabrication method. The devices consist of a bilayer of poly(methyl methacrylate) (PMMA) and Te-rich GeSbTe chalcogenide nanoscale thin films sandwiched between Ag top and TiN bottom electrodes on both Si and flexible polyimide substrates. These hybrid memristors require no electroforming process and exhibit reliable and reproducible bipolar resistive switching at low switching voltages under both flat and bending conditions. Multistate switching behavior can also be achieved by controlling the compliance current (CC). We attribute the switching between the high resistance state (HRS) and low resistance state (LRS) in the devices to the formation and rupture of conductive Ag filaments within the hybrid PMMA/GeSbTe matrix. This work provides a promising route to fabricate flexible memory devices through an electrodeposition process for application in flexible electronics.

3.
Nanoscale ; 14(46): 17170-17181, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380717

RESUMO

Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO2) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The in situ learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated. The volatile (temporal) resistive switching in diffusive memristors arises from the formation and subsequent spontaneous rupture of conductive filaments via diffusion of Ag species within the 3D-structured nanopores of the mSiO2 thin film. Besides volatile switching, the devices also exhibit a bipolar non-volatile resistive switching behavior when the devices are operated at a higher compliance current level. The implementation of mSiO2 thin films opens the route to fabricate a simple and low cost dynamic memristor with a temporal information process functionality, which is essential for neuromorphic computing applications.

4.
Nanotechnology ; 31(15): 155203, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860883

RESUMO

Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by π-stacking.

5.
J Am Chem Soc ; 141(33): 12989-12993, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31381859

RESUMO

Alignment of metal-organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

6.
Nanoscale ; 9(43): 17091-17098, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29086790

RESUMO

Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...