Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904668

RESUMO

Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269327

RESUMO

The prevalence of photosynthesis, as the major natural solar energy transduction mechanism or biophotovoltaics (BPV), has always intrigued mankind. Over the last decades, we have learned to extract this renewable energy through continuously improving solid-state semiconductive devices, such as the photovoltaic solar cell. Direct utilization of plant-based BPVs has, however, been almost impracticable so far. Nevertheless, the electrochemical platform of fuel cells (FCs) relying on redox potentials of algae suspensions or biofilms on functionalized anode materials has in recent years increasingly been demonstrated to produce clean or carbon-negative electrical power generators. Interestingly, these algal BPVs offer unparalleled advantages, including carbon sequestration, bioremediation and biomass harvesting, while producing electricity. The development of high performance and durable BPVs is dependent on upgraded anode materials with electrochemically dynamic nanostructures. However, the current challenges in the optimization of anode materials remain significant barriers towards the development of commercially viable technology. In this context, two-dimensional (2D) graphene-based carbonaceous material has widely been exploited in such FCs due to its flexible surface functionalization properties. Attempts to economically improve power outputs have, however, been futile owing to molecular scale disorders that limit efficient charge coupling for maximum power generation within the anodic films. Recently, Langmuir-Blodgett (LB) film has been substantiated as an efficacious film-forming technique to tackle the above limitations of algal BPVs; however, the aforesaid technology remains vastly untapped in BPVs. An in-depth electromechanistic view of the fabrication of LB films and their electron transference mechanisms is of huge significance for the scalability of BPVs. However, an inclusive review of LB films applicable to BPVs has yet to be undertaken, prohibiting futuristic applications. Consequently, we report an inclusive description of a contextual outline, functional principles, the LB film-formation mechanism, recent endeavors in developing LB films and acute encounters with prevailing BPV anode materials. Furthermore, the research and scale-up challenges relating to LB film-integrated BPVs are presented along with innovative perceptions of how to improve their practicability in scale-up processes.

3.
Biosensors (Basel) ; 8(4)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563159

RESUMO

Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application. In this article, we conducted a theoretical study concerning surface mode propagation, especially Rayleigh and Sezawa mode in the layered GaN/sapphire structure with the presence of various guiding layers. It is demonstrated that the increase in thickness of guiding layer will decrease the phase velocities of surface mode depending on the material properties of the layer. In addition, the Q-factor value indicating the resonance properties of surface mode appeared to be affected with the presence of fluid domain, particularly in the Rayleigh mode. Meanwhile, the peak for Sezawa mode shows the highest Q factor and is not altered by the presence of fluid. Based on these theoretical results using the finite element method, it could contribute to the development of a GaN-based device to generate surface acoustic wave, especially in Sezawa mode which could be useful in acoustophoresis, lab on-chip and microfluidics applications.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/métodos , Gálio/química , Elasticidade , Microfluídica/métodos , Som
4.
Sci Rep ; 6: 31193, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502051

RESUMO

Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.


Assuntos
Fontes de Energia Bioelétrica , Fotossíntese
5.
Sci Rep ; 4: 7562, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531093

RESUMO

The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Chlorella/fisiologia , Grafite/química , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...