Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22824, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129413

RESUMO

Cancer and different types of tumors are still the most resistant diseases to available therapeutic agents. Finding a highly effective anticancer drug is the first target and concern of thousands of drug designers. In our attempts to address this concern, a new pyrazine derivative, 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea (BPU), was designed via structural optimization and synthesized to investigate its anticancer/antitumor potential. The in-vitro anticancer properties of BPU were evaluated by MTT assay using selected cell lines, including the Jurkat, HeLa, and MCF-7 cells. The Jurkat cells were chosen to study the effect of BPU on cell cycle analysis using flow cytometry technique. BPU exhibited an effective cytotoxic ability in all the three cell lines assessed. It was found to be more prominent with the Jurkat cell line (IC50 = 4.64 ± 0.08 µM). When it was subjected to cell cycle analysis, this compound effectively arrested cell cycle progression in the sub-G1 phase. Upon evaluating the antiangiogenic potential of BPU via the in-vivo/ex-vivo shell-less chick chorioallantoic membrane (CAM) assays, the compound demonstrated very significant findings, revealing a complementary supportive action for the compound to act as a potent anticancer agent through inhibiting blood vessel formation in tumor tissues. Moreover, the docking energy of BPU computationally scored - 9.0 kcal/mol with the human matrix metalloproteinase 2 (MMP-2) and - 7.8 kcal/mol with the human matrix metalloproteinase 9 (MMP-9), denoting promising binding results as compared to the existing drugs for cancer therapy. The molecular dynamics (MD) simulation outcomes showed that BPU could effectively bind to the previously-proposed catalytic sites of both MMP-2 and MMP-9 enzymes with relatively stable statuses and good inhibitory binding abilities and parameters. Our findings suggest that the compound BPU could be a promising anticancer agent since it effectively inhibited cell proliferation and can be selected for further in-vitro and in-vivo investigations. In addition, the current results can be extensively validated by conducting wet-lab analysis so as to develop novel and better derivatives of BPU for cancer therapy with much less side effects and higher activities.


Assuntos
Antineoplásicos , Metaloproteinase 2 da Matriz , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ureia/farmacologia , Antineoplásicos/química , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular
2.
Curr Pharm Des ; 29(34): 2752-2762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921134

RESUMO

BACKGROUND: In the case of COVID-19 patients, it has been observed that the immune system of the infected person exhibits an extreme inflammatory response known as cytokine release syndrome (CRS) where the inflammatory cytokines are swiftly produced in quite large amounts in response to infective stimuli. Numerous case studies of COVID-19 patients with severe symptoms have documented the presence of higher plasma concentrations of human interleukin-6 (IL-6), which suggests that IL-6 is a crucial factor in the pathophysiology of the disease. In order to prevent CRS in COVID-19 patients, the drugs that can exhibit binding interactions with IL-6 and block the signaling pathways to decrease the IL-6 activity may be repurposed. METHODS: This research work focused on molecular docking-based screening of the drugs celecoxib (CXB) and dexamethasone (DME) to explore their potential to interact with the binding sites of IL-6 protein and reduce the hyper-activation of IL-6 in the infected personnel. RESULTS: Both of the drugs were observed to bind with the IL-6 (IL-6 receptor alpha chain) and IL-6Rα receptor with the respective affinities of -7.3 kcal/mol and -6.3 kcal/mol, respectively, for CXB and DME. Moreover, various types of binding interactions of the drugs with the target proteins were also observed in the docking studies. The dynamic behaviors of IL-6/IL-6Rα in complex with the drugs were also explored through molecular dynamics simulation analysis. The results indicated significant stabilities of the acquired drug-protein complexes up to 100 ns. CONCLUSION: The findings of this study have suggested the potential of the drugs studied to be utilized as antagonists for countering CRS in COVID-19 ailment. This study presents the studied drugs as promising candidates both for the clinical and pre-clinical treatment of COVID-19.


Assuntos
COVID-19 , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Interleucina-6 , Celecoxib/farmacologia , Celecoxib/uso terapêutico , SARS-CoV-2 , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Inteligência Artificial
3.
Front Genet ; 14: 1230998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900178

RESUMO

Objective: Estrogen receptor breast cancer (BC) is characterized by the expression of estrogen receptors. It is the most common cancer among women, with an incidence rate of 2.26 million cases worldwide. The aim of this study was to identify differentially expressed genes and isoform switching between estrogen receptor positive and triple negative BC samples. Methods: The data were collected from ArrayExpress, followed by preprocessing and subsequent mapping from HISAT2. Read quantification was performed by StringTie, and then R package ballgown was used to perform differential expression analysis. Functional enrichment analysis was conducted using Enrichr, and then immune genes were shortlisted based on the ScType marker database. Isoform switch analysis was also performed using the IsoformSwitchAnalyzeR package. Results: A total of 9,771 differentially expressed genes were identified, of which 86 were upregulated and 117 were downregulated. Six genes were identified as mainly associated with estrogen receptor positive BC, while a novel set of ten genes were found which have not previously been reported in estrogen receptor positive BC. Furthermore, alternative splicing and subsequent isoform usage in the immune system related genes were determined. Conclusion: This study identified the differential usage of isoforms in the immune system related genes in cancer cells that suggest immunosuppression due to the dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine activity.

4.
ACS Omega ; 8(35): 32027-32042, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692252

RESUMO

Excessive use of antimicrobial medications including antibiotics has led to the emerging menace of antimicrobial resistance, which, as per the World Health Organization (WHO), is among the top ten public health threats facing humanity, globally. This necessitates that innovative technologies be sought that can aid in the elimination of pathogens and hamper the spread of infections. Zinc oxide (ZnO) has multifunctionality owing to its extraordinary physico-chemical properties and functionality in a range of applications. In this research, ZnO nanoparticles (NPs) were synthesized from zinc nitrate hexahydrate, by a green synthesis approach using Cymbopogon citratus extract followed by characterization of the NPs. The obtained X-ray diffraction peaks of ZnO NPs matched with the standard JCPDS card (no. 89-510). The particles had a size of 20-24 nm, a wurtzite structure with a high crystallinity, and hexagonal rod-like shape. UV-Vis spectroscopy revealed absorption peaks between 369 and 374 nm of ZnO NPs synthesized from C. citratus extract confirming the formation of ZnO. Fourier transform infrared confirmed the ZnO NPs as strong absorption bands were observed in the range of 381-403 cm-1 corresponding to Zn-O bond stretching. Negative values of the highest occupied molecular orbital-lowest unoccupied molecular orbital for ZnO NPs indicated the good potential to form a stable ligand-protein complex. Docking results indicated favorable binding interaction between ZnO and DNA gyrase subunit b with a binding energy of -2.93 kcal/mol. ZnO NPs at various concentrations inhibited the growth of Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration values of ZnO NPs against E. coli and S. aureus were found to be 92.07 ± 0.13 and 88.13 ± 0.35 µg/mL, respectively, at a concentration of 2 mg/mL. AO/EB staining and fluorescence microscopy revealed the ability of ZnO NPs to kill E. coli and S. aureus cells. Through the findings of this study, it has been shown that C. citratus extract can be used in a green synthesis approach to generate ZnO NPs, which can be employed as alternatives to antibiotics and a tool to eliminate drug-resistant microbes in the future.

5.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146578

RESUMO

Despite the intense research work since the beginning of the pandemic, the pathogenesis of COVID-19 is not yet clearly understood. The previous mechanism of COVID-19, based on ACE2 tropism and explained through a single receptor, is insufficient to explain the pathogenesis due to the absence of angiotensin-converting enzyme 2 (ACE2) receptors in most of the affected organs. In the current study, we used the PatchDock server to run a molecular docking study of both the gonadotropin-releasing hormone receptor (GnRHR) and G-protein-coupled-receptor (GPCR) with the SARS-CoV-2 spike protein. Molecular Dynamics (MD) simulations were run to analyze the stability of the complexes using the GROMACS package. The docking results showed a high affinity between the spike protein with the GnRHR (-1424.9 kcal/mol) and GPCR (-1451.8 kcal/mol). The results of the MD simulations revealed the significant stability of the spike protein with the GnRHR and GPCR up to 100 ns. The SARS-CoV-2 spike protein had strong binding interactions with the GPCRs and GnRHRs, which are highly expressed in the brain, endocrine organs, and olfactory neurons. This study paves the way towards understanding the complex mechanism of neuroendocrine involvement and peripheral organ involvement, may explain the changing symptoms in patients due to new variants, and may lead to the discovery of new drug targets for COVID-19. In vitro studies involving genetic engineering or gene knockdown of the GPCRs and GnRHRs are needed to further investigate the role of these receptors in COVID-19 pathogenesis.

6.
Mol Biotechnol ; 64(10): 1152-1163, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35460447

RESUMO

Myzus persicae causes considerable losses to crops as a major pest. The damage is direct by feeding and also partly indirect because it vectors plant viruses. The currently available control strategies rely on unsafe and nonecofriendly chemical pesticide applications. Plant-mediated RNA interference (RNAi) has emerged as a powerful tool in crop protection from insect pests. Aphid salivary proteins are essential for phloem feeding and act as mediators of the complex interactions between aphids and their host plants. We documented the efficacy of dsRNA directed against macrophage inhibitory factor (MIF1) of M. persicae to induce aphid mortality and gene silencing through the generation of transgenic potato lines. A binary construct harbouring dsMIF1 driven by the CaMV35S promoter was introduced into the local potato variety 'AGB-white' by Agrobacterium-mediated transformation. PCR and Southern blotting validated the transgene presence and genomic integration in seven transgenic potato lines. An in vitro detached leaf assay revealed a significantly high aphid mortality of 65% in the transgenic potato line sDW-2, while the aphid mortality was 77% in the sDW-2 transgenic line during the in planta bioassay in comparison with 19% aphid mortality in the control nontransgenic potato line. A significantly high silencing effect was observed in the mRNA expression of MIF1, which was reduced to 21% in aphids fed on the transgenic potato line sDW-2. However, variable knockdown effects were found among six other transgenic potato lines, ranging from 30 to 62%. The study concluded that plant-mediated silencing of aphid RNA induces significant RNAi in M. persicae, along with enhanced aphid mortality.


Assuntos
Afídeos , Solanum tuberosum , Animais , Afídeos/genética , Macrófagos , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas , Solanum tuberosum/genética
7.
Funct Plant Biol ; 49(7): 647-658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437142

RESUMO

The Arabidopsis thaliana L. photoreceptor genes homologues in tomato (Solanum lycopersicum L.) genome were analysed using bioinformatic tools. The expression pattern of these genes under cold stress was also evaluated. Transcriptome analysis of the tomato sequence revealed that the photoreceptor gene family is involved in abiotic stress tolerance. They participate in various pathways and controlling multiple metabolic processes. They are structurally related to PAS, LIGHT-OXYGEN-VOLTAGE-SENSING (LOV), DNA photolyase, 5,10-methenyl tetrahydrofolate (MTHF), flavin-binding kelch F-box, GAF, PHY, Seven-bladed ß-propeller and C27 domains. They also interact with flavin adenine dinucleotide (FAD), (5S)-5-methyl-2-(methylsulfanyl)-5-phenyl-3-(phenylamino)-3,5-dihydro-4H-imidazol-4-one (FNM) and Phytochromobilin (PϕB) ligands. These interactions help to create a cascade of protein phosphorylation involving in cell defence transcription or stress-regulated genes. They localisation of these gene families on tomato chromosomes appeared to be uneven. Phylogenetic tree of tomato and Arabidopsis photoreceptor gene family were classified into eight subgroups, indicating gene expression diversity. Morphological and physiological assessment revealed no dead plant after 4h of cold treatment. All the plants were found to be alive, but there were some variations in the data across different parameters. Cold stress significantly reduced the rate of photosynthesis from 10.06 to 3.16µmolm-2 s-1 , transpiration from 4.6 to 1.3mmolm-2 s-1 , and stomatal conductance from 94.6 to 25.6mmolm-2 s-1 . The cold stressed plants also had reduced height, root/shoot length, and fresh/dry biomass weight than the control plants. Relative expression analysis under cold stress revealed that after 4h, light stimulates the transcript level of Cry2 from 1.9 to 5.7 and PhyB from 0.98 to 6.9 compared to other photoreceptor genes.


Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Filogenia , Fatores de Transcrição/genética
8.
Vaccines (Basel) ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36679906

RESUMO

Crimean-Congo haemorrhagic fever (CCHF), caused by Crimean-Congo haemorrhagic fever virus (CCHFV), is a disease of worldwide importance (endemic yet not limited to Asia, Middle East, and Africa) and has triggered several outbreaks amounting to a case fatality rate of 10-40% as per the World Health Organization. Genetic diversity and phylogenetic data revealed that the Asia-1 genotype of CCHFV remained dominant in Pakistan, where 688 confirmed cases were reported between the 2012-2022 period. Currently, no approved vaccine is available to tackle the viral infection. Epitope-based vaccine design has gained significant attention in recent years due to its safety, timeliness, and cost efficiency compared to conventional vaccines. In the present study, we employed a robust immunoinformatics-based approach targeting the structural glycoproteins G1 and G2 of CCHFV (Asia-1 genotype) to design a multi-epitope vaccine construct. Five B-cells and six cytotoxic T-lymphocytes (CTL) epitopes were mapped and finalized from G1 and G2 and were fused with suitable linkers (EAAAK, GGGS, AAY, and GPGPG), a PADRE sequence (13 aa), and an adjuvant (50S ribosomal protein L7/L12) to formulate a chimeric vaccine construct. The selected CTL epitopes showed high affinity and stable binding with the binding groove of common human HLA class I molecules (HLA-A*02:01 and HLA-B*44:02) and mouse major histocompatibility complex class I molecules. The chimeric vaccine was predicted to be an antigenic, non-allergenic, and soluble molecule with a suitable physicochemical profile. Molecular docking and molecular dynamics simulation indicated a stable and energetically favourable interaction between the constructed antigen and Toll-like receptors (TLR2, TLR3, and TLR4). Our results demonstrated that innate, adaptive, and humoral immune responses could be elicited upon administration of such a potent muti-epitope vaccine construct. These results could be helpful for an experimental vaccinologist to develop an effective vaccine against the Asia-1 genotype of CCHFV.

9.
Comput Biol Chem ; 83: 107127, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542706

RESUMO

In order to maintain a consistent supply of rice globally, control of pathogens affecting crop production is a matter of due concern. Rice yellow mottle virus(RYMV) is known to cause a variety of symptoms which can result in reduced yield. Four ORFs can be identified in the genome of RYMV encoding for P1 (ORF1), Polyprotein (processed to produce VPg, protease, helicase, RdRp4) (ORF2), putative RdRp (ORF3) and capsid/coat protein (ORF4). This research was aimed at identifying genome encoded miRNAs of O. sativa that are targeted to the genome of Rice Yellow Mottle Virus (RYMV). A consensus of four miRNA target prediction algorithms (RNA22, miRanda, TargetFinder and psRNATarget) was computed, followed by calculation of free energies of miRNA-mRNA duplex formation. A phylogenetic tree was constructed to portray the evolutionary relationships between RYMV strains isolated to date. From the consensus of algorithms used, a total of seven O. sativa miRNAs were predicted and conservation of target site was finally evaluated. Predicted miRNAs can be further evaluated by experiments involving the testing of the success of in vitro gene silencing of RYMV genome; this can pave the way for development of RYMV resistant rice varieties in the future.


Assuntos
Inativação Gênica , Genoma Viral/genética , MicroRNAs/genética , Oryza/genética , Oryza/virologia , Vírus de Plantas/genética
10.
J Ayub Med Coll Abbottabad ; 31(1): 108-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868795

RESUMO

BACKGROUND: The current era of genome engineering has been revolutionized by the evolution of a bacterial adaptive immune system, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) into a radical technology that is making an expeditious progress in its mechanism, function and applicability.. METHODS: A systematic literature review study was carried out with the help of all available information and online resources.. RESULTS: In this review, we intend to elucidate different aspects of CRISPR in the light of current advancements. Utilizing a nonspecific Cas9 nuclease and a sequence specific programmable CRISPR RNA (crRNA), this system cleaves the target DNA with high precision. With a vast potential for profound implications, CRISPR has emerged as a mainstream method for plausible genomic manipulations in a range of organisms owing to its simplicity, accuracy and speed. A modified form of CRISPR system, known as CRISPR/Cpf1 that employs a smaller and simpler endonuclease (Cpf1) than Cas9, can be used to overcome certain limitations of CRISPR/Cas9 system. Despite clear-cut innovative biological applications, this technology is challenged by off-target effects and associated risks, thus safe and controlled implementation is needed to enable this emerging technique assist both biological research and translational applications. CONCLUSIONS: CRISPR/Cas9 systems will undoubtedly revolutionize the study and treatment of both immunologic and allergic diseases. Concerned authorities should formulate and authorize such laws and regulations that permit the safe and ethical use of this emerging technology for basic research and clinical purposes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genômica , Animais , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29868505

RESUMO

In South Asia, Haemaphysalis spinigera tick transmits Kyasanur Forest Disease Virus (KFDV), a flavivirus that causes severe hemorrhagic fever with neurological manifestations such as mental disturbances, severe headache, tremors, and vision deficits in infected human beings with a fatality rate of 3-10%. The disease was first reported in March 1957 from Kyasanur forest of Karnataka (India) from sick and dying monkeys. Since then, between 400 and 500 humans cases per year have been recorded; monkeys and small mammals are common hosts of this virus. KFDV can cause epizootics with high fatality in primates and is a level-4 virus according to the international biosafety rules. The density of tick vectors in a given year correlates with the incidence of human disease. The virus is a positive strand RNA virus and its genome was discovered to code for one polyprotein that is cleaved post-translationally into 3 structural proteins (Capsid protein, Envelope Glycoprotein M and Envelope Glycoprotein E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). KFDV has a high degree of sequence homology with most members of the TBEV serocomplex. Alkhurma virus is a KFDV variant sharing a sequence similarity of 97%. KFDV is classified as a NIAID Category C priority pathogen due to its extreme pathogenicity and lack of US FDA approved vaccines and therapeutics; also, the infectious dose is currently unknown for KFD. In India, formalin-inactivated KFDV vaccine produced in chick embryo fibroblast is being used. Nevertheless, further efforts are required to enhance its long-term efficacy. KFDV remains an understudied virus and there remains a lack of insight into its pathogenesis; moreover, specific treatment to the disease is not available to date. Environmental and climatic factors involved in disseminating Kyasanur Forest Disease are required to be fully explored. There should be a mapping of endemic areas and cross-border veterinary surveillance needs to be developed in high-risk regions. The involvement of both animal and health sector is pivotal for circumscribing the spread of this disease to new areas.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Doença da Floresta de Kyasanur/epidemiologia , Doença da Floresta de Kyasanur/virologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/virologia , Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Animais , Ásia , Embrião de Galinha , Modelos Animais de Doenças , Surtos de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Doenças Endêmicas , Haplorrinos , Humanos , Ixodidae , Doença da Floresta de Kyasanur/diagnóstico , Doença da Floresta de Kyasanur/transmissão , Epidemiologia Molecular , Homologia de Sequência , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/transmissão , Vacinas de Produtos Inativados , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética
12.
Front Immunol ; 9: 3000, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619353

RESUMO

Human papillomavirus (HPV) induced cervical cancer is the second most common cause of death, after breast cancer, in females. Three prophylactic vaccines by Merck Sharp & Dohme (MSD) and GlaxoSmithKline (GSK) have been confirmed to prevent high-risk HPV strains but these vaccines have been shown to be effective only in girls who have not been exposed to HPV previously. The constitutively expressed HPV oncoproteins E6 and E7 are usually used as target antigens for HPV therapeutic vaccines. These early (E) proteins are involved, for example, in maintaining the malignant phenotype of the cells. In this study, we predicted antigenic peptides of HPV types 16 and 18, encoded by E6 and E7 genes, using an immunoinformatics approach. To further evaluate the immunogenic potential of the predicted peptides, we studied their ability to bind to class I major histocompatibility complex (MHC-I) molecules in a computational docking study that was supported by molecular dynamics (MD) simulations and estimation of the free energies of binding of the peptides at the MHC-I binding cleft. Some of the predicted peptides exhibited comparable binding free energies and/or pattern of binding to experimentally verified MHC-I-binding epitopes that we used as references in MD simulations. Such peptides with good predicted affinity may serve as candidate epitopes for the development of therapeutic HPV peptide vaccines.


Assuntos
Antígenos Virais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Antígenos Virais/química , Antígenos Virais/metabolismo , Biologia Computacional/métodos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Humanos , Simulação de Dinâmica Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/química , Proteínas Repressoras/química , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Homologia Estrutural de Proteína , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
13.
Front Plant Sci ; 8: 372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400775

RESUMO

Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded from sgRNA1, located at the 3'end of the genome and sgRNA2 is located at the extremity of the 3'genome end. The objective of this study is to locate the possible attachment sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase (miRNA database) and were tested for hybridization of MCMV genome. These algorithms considered the parameters of seed pairing, minimum free energy, target site accessibility, multiple target sites, pattern recognition and folding energy for attachment. Out of 321 miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results of this study can hence act as the first step towards the development of MCMV resistant transgenic Maize plants through expression of the selected miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...