Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cladistics ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469932

RESUMO

The integration of morphological and molecular data is essential to understand the affinities of fossil taxa and spatio-temporal evolutionary processes of organisms. However, homoplastic morphological characters can mislead the placement of fossil taxa and impact downstream analyses. Here, we provide an example of how to mitigate effectively the effect of morphological homoplasy on the placement of fossil taxa and biogeographic inferences of Cissampelideae. We assembled three data types, morphological data only, morphological data with a molecular scaffold and combined morphological and molecular data. By removing high-level homoplastic morphological data or reweighting the morphological characters, we conducted 15 parsimony, 12 undated Bayesian and four dated Bayesian analyses. Our results show that the 14 selected Cissampelideae fossil taxa are placed poorly when based only on morphological data, but the addition of molecular scaffold and combination of morphological and molecular data greatly improve the resolution of fossil nodes. We raise the monotypic Stephania subg. Botryodiscia to generic status and discover that three fossils previously assigned to Stephania should be members of Diploclisia. The Bayesian tip-dated tree recovered by removing homoplastic morphological characters with a Rescaled Consistency Index <0.25 has the highest stratigraphic fit and consequently generates more reasonable biogeographic reconstruction for Cissampelideae. Cissampelideae began to diversify in Asia in the latest Cretaceous and subsequently dispersed to South America around the Cretaceous-Palaeogene boundary. Two dispersal events from Asia to Africa occurred in the Early Eocene and the Late Eocene-Late Oligocene, respectively. These findings provide guidelines and practical methods for mitigating the effects of homoplastic morphological characters on fossil placements and Bayesian tip-dating, as well as insights into the past tropical floristic exchanges among different continents.

2.
Curr Biol ; 34(4): 755-768.e4, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272029

RESUMO

During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.


Assuntos
Delphinium , Ranunculaceae , Ranunculaceae/metabolismo , Delphinium/metabolismo , Fatores de Transcrição/metabolismo , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 75(7): 1800-1822, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38109712

RESUMO

The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.


Assuntos
Flores , Ranunculales , Filogenia , Evolução Biológica , Folhas de Planta/genética
4.
Mol Phylogenet Evol ; 186: 107868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394080

RESUMO

Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at âˆ¼ 42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at âˆ¼ 15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.


Assuntos
Papaveraceae , Filogenia , Ásia , Ecossistema , Sequência de Bases , Filogeografia
5.
Mol Phylogenet Evol ; 186: 107870, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406952

RESUMO

The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.


Assuntos
Actaea , Ranunculaceae , Filogenia , Filogeografia , Florestas
6.
Nat Commun ; 14(1): 4021, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463899

RESUMO

The Arctic tundra is a relatively young and new type of biome and is especially sensitive to the impacts of global warming. However, little is known about how the Arctic flora was shaped over time. Here we investigate the origin and evolutionary dynamics of the Arctic flora by sampling 32 angiosperm clades that together encompass 3626 species. We show that dispersal into the Arctic and in situ diversification within the Arctic have similar trends through time, initiating at approximately 10-9 Ma, increasing sharply around 2.6 Ma, and peaking around 1.0-0.7 Ma. Additionally, we discover the existence of a long-term dispersal corridor between the Arctic and western North America. Our results suggest that the initiation and diversification of the Arctic flora might have been jointly driven by progressive landscape and climate changes and sea-level fluctuations since the early Late Miocene. These findings have important conservation implications given rapidly changing climate conditions in the Arctic.


Assuntos
Ecossistema , Tundra , Regiões Árticas , Evolução Biológica , Mudança Climática
7.
Ann Bot ; 131(5): 867-883, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976653

RESUMO

BACKGROUND AND AIMS: Artemisia is a mega-diverse genus consisting of ~400 species. Despite its medicinal importance and ecological significance, a well-resolved phylogeny for global Artemisia, a natural generic delimitation and infrageneric taxonomy remain missing, owing to the obstructions from limited taxon sampling and insufficient information on DNA markers. Its morphological characters, such as capitulum, life form and leaf, show marked variations and are widely used in its infrageneric taxonomy. However, their evolution within Artemisia is poorly understood. Here, we aimed to reconstruct a well-resolved phylogeny for global Artemisia via a phylogenomic approach, to infer the evolutionary patterns of its key morphological characters and to update its circumscription and infrageneric taxonomy. METHODS: We sampled 228 species (258 samples) of Artemisia and its allies from both fresh and herbarium collections, covering all the subgenera and its main geographical areas, and conducted a phylogenomic analysis based on nuclear single nucleotide polymorphisms (SNPs) obtained from genome skimming data. Based on the phylogenetic framework, we inferred the possible evolutionary patterns of six key morphological characters widely used in its previous taxonomy. KEY RESULTS: The genus Kaschgaria was revealed to be nested in Artemisia with strong support. A well-resolved phylogeny of Artemisia consisting of eight highly supported clades was recovered, two of which were identified for the first time. Most of the previously recognized subgenera were not supported as monophyletic. Evolutionary inferences based on the six morphological characters showed that different states of these characters originated independently more than once. CONCLUSIONS: The circumscription of Artemisia is enlarged to include the genus Kaschgaria. The morphological characters traditionally used for the infrageneric taxonomy of Artemisia do not match the new phylogenetic tree. They experienced a more complex evolutionary history than previously thought. We propose a revised infrageneric taxonomy of the newly circumscribed Artemisia, with eight recognized subgenera to accommodate the new results.


Assuntos
Artemisia , Filogenia , Artemisia/genética , Folhas de Planta , Núcleo Celular
8.
Ann Bot ; 131(4): 685-695, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36721969

RESUMO

BACKGROUND AND AIMS: Modern tropical rainforests house the highest biodiversity of Earth's terrestrial biomes and are distributed in three low-latitude areas. However, the biogeographical patterns and processes underlying the distribution of biodiversity among these three areas are still poorly known. Here, we used Tiliacoreae, a tribe of pantropical lianas with a high level of regional endemism, to provide new insights into the biogeographical relationships of tropical rainforests among different continents. METHODS: Based on seven plastid and two nuclear DNA regions, we reconstructed a phylogeny for Tiliacoreae with the most comprehensive sampling ever. Within the phylogenetic framework, we then estimated divergence times and investigated the spatiotemporal evolution of the tribe. KEY RESULTS: The monophyletic Tiliacoreae contain three major clades, which correspond to Neotropical, Afrotropical and Indo-Malesian/Australasian areas, respectively. Both Albertisia and Anisocycla are not monophyletic. The most recent common ancestor of Tiliacoreae occurred in Indo-Malesia, the Afrotropics and Neotropics in the early Eocene, then rapidly diverged into three major clades between 48 and 46 Ma. Three dispersals from Indo-Malesia to Australasia were inferred, one in the middle Eocene and two in the late Oligocene-late Miocene, and two dispersals from the Afrotropics to Indo-Malesia occurred in the late Eocene-Oligocene. CONCLUSIONS: The three main clades of Anisocycla correspond to three distinct genera [i.e. Anisocycla sensu stricto and two new genera (Georgesia and Macrophragma)]. Epinetrum is a member of Albertisia. Our findings highlight that sea-level fluctuations and climate changes in the Cenozoic have played important roles in shaping the current distribution and endemism of Tiliacoreae, hence contributing to the knowledge on the historical biogeography of tropical rainforests on a global scale.


Assuntos
Menispermaceae , Floresta Úmida , Filogenia , Filogeografia , Menispermaceae/genética , Plastídeos/genética
9.
Mol Phylogenet Evol ; 181: 107712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693534

RESUMO

Angiosperms, a trigger for the Cretaceous Terrestrial Revolution (KTR), underwent a rapid expansion and occupied all the environments during the Mid-Upper Cretaceous. Yet, Cretaceous biogeographic patterns and processes underlying the distribution of angiosperm diversity in the Northern Hemisphere are still poorly known. Here, we elucidated the biogeographic diversification of the angiosperm family Papaveraceae, an ancient Northern Hemisphere clade characterized by poor dispersal ability and high level of regional endemism. Based on both plastome and multi-locus datasets, we reconstructed a robust time-calibrated phylogeny that includes all currently recognized 45 genera of this family. Within the time-calibrated phylogenetic framework, we conducted 72 biogeographic analyses by testing the sensitivity of uncertainties of area delimitation, maxarea constraints, and the parameters of the model, i.e., j (describing jump-dispersal events) and w (modifying dispersal multiplier matrices), to ancestral range estimations. We also inferred ancestral habitat and ecological niches. Phylogenetic analyses strongly support Papaveraceae as monophyletic. Pteridophylloideae is strongly supported as sister to Hypecoideae-Fumarioideae. Our results indicate that the j parameter and number of predefined areas strongly affect ancestral range estimates, generating questionable ancestral ranges, whereas maxarea constraint and w parameter have no effect and improve model fit. After accounting for these uncertainties, our results indicate that Papaveraceae differentiated in Asian wet forests during the Lower Cretaceous and subsequently occupied the Asian and western North American arid and open areas. Three dispersals from Asia to western North America via the Bering land bridge occurred in the Mid-Upper Cretaceous, largely in agreement with the KTR. Habitat shift and ecological niche divergence resulted in the subsequent disjunctions between Asia and western North America. These findings suggest that the interplay of range expansion and niche divergence-driven vicariance might have shaped Cretaceous biogeographic patterns of angiosperms with Papaveraceae-like ecological requirements and dispersal abilities in the Northern Hemisphere, hence contributing to the knowledge on the geographic expansion of angiosperms during the KTR.


Assuntos
Magnoliopsida , Papaver , Papaveraceae , Filogenia , Filogeografia
10.
Front Plant Sci ; 13: 1055196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531353

RESUMO

TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.

11.
BMC Genomics ; 23(1): 766, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418947

RESUMO

BACKGROUND: Elucidating the phylogenetic relationships within species-rich genera is essential but challenging, especially when lineages are assumed to have been going through radiation events. Mahonia Nutt. (Berberidaceae) is a genus with cosmopolitan distribution, comprising approximately 100 species, two of which are known as Caulis Mahoniae (M. bealei and M. fortunei) with crucial pharmacological significance in Chinese herbal medicine. Mahonia is a taxonomically challenging genus, and intrageneric phylogenetic relationships still need to be explored using genome data. Universal DNA barcodes and floral morphological attributes have limited discriminatory power in Mahonia. RESULTS: We sequenced 17 representative plastomes and integrated three published plastome data together to conduct comparative and phylogenetic analyses. We found that Mahonia and Berberis share a large IR expansion (~ 12 kb), which is recognized as a typical character of Berberideae. Repeated sequences are revealed in the species of Mahonia, which are valuable for further population genetic studies. Using a comparative plastome analysis, we determined eight hypervariable regions whose discriminative power is comparable to that of the whole plastid genomes. The incongruence of the ITS and the plastome tree topologies may be ascribed to ancestral hybridization events and/or to incomplete lineage sorting. In addition, we suggest that leaf epidermal characters could help to distinguish closely related species in Mahonia. CONCLUSIONS: We propose an integrative approach combining special barcodes and micromorphological traits to circumscribe Mahonia species. The results cast a new light on the development of an integrative method for accurate species circumscription and provide abundant genetic resources for further research on Mahonia.


Assuntos
Berberidaceae , Genomas de Plastídeos , Mahonia , Filogenia , Hibridização Genética
12.
Front Plant Sci ; 13: 961906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212342

RESUMO

Ranunculaceae comprise ca. 2,500 species (ca. 55 genera) that display a broad range of floral diversity, particularly at the level of the perianth. Petals, when present, are often referred to as "elaborate" because they have a complex morphology. In addition, the petals usually produce and store nectar, which gives them a crucial functional role in the interaction with pollinators. Its morphological diversity and species richness make this family a particularly suitable model group for studying the evolution of complex morphologies. Our aims are (1) to reconstruct the ancestral form of the petal and evolutionary stages at the scale of Ranunculaceae, (2) to test the hypothesis that there are morphogenetic regions on the petal that are common to all species and that interspecific morphological diversity may be due to differences in the relative proportions of these regions during development. We scored and analyzed traits (descriptors) that characterize in detail the complexity of mature petal morphology in 32 genera. Furthermore, we described petal development using high resolution X-Ray computed tomography (HRX-CT) in six species with contrasting petal forms (Ficaria verna, Helleborus orientalis, Staphisagria picta, Aconitum napellus, Nigella damascena, Aquilegia vulgaris). Ancestral state reconstruction was performed using a robust and dated phylogeny of the family, allowing us to produce new hypotheses for petal evolution in Ranunculaceae. Our results suggest a flat ancestral petal with a short claw for the entire family and for the ancestors of all tribes except Adonideae. The elaborate petals that are present in different lineages have evolved independently, and similar morphologies are the result of convergent evolution.

13.
J Integr Plant Biol ; 64(11): 2126-2134, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083596

RESUMO

The dominant species of a biome can be regarded as its genuine indicator. Evergreen broadleaved forests (EBLFs) in subtropical East Asia harbor high levels of species biodiversity and endemism and are vital to regional carbon storage and cycling. However, the historical assembly of this unique biome is still controversial. Fagaceae is the most essential family in East Asian subtropical EBLFs and its dominant species are vital for the existence of this biome. Here, we used the dominant Fagaceae species to shed light on the dynamic process of East Asian subtropical EBLFs over time. Our results indicate high precipitation in summer and low temperature in winter are the most influential climatic factors for the distribution of East Asian subtropical EBLFs. Modern East Asian subtropical EBLFs did not begin to appear until 23 Ma, subsequently experienced a long-lasting development in the Miocene and markedly deteriorated at about 4 Ma, driven jointly by orogenesis and paleoclimate. We also document that there is a lag time between when one clade invaded the region and when its members become dominant species within the region. This study may improve our ability to predict and mitigate the threats to biodiversity of East Asian subtropical EBLFs and points to a new path for future studies involving multidisciplinary methods to explore the assembly of regional biomes.


Assuntos
Fagaceae , Árvores , Clima Tropical , Florestas , Biodiversidade
14.
Proc Natl Acad Sci U S A ; 119(34): e2207199119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969742

RESUMO

Caves are home to unique and fragile biotas with high levels of endemism. However, little is known about how the biotic colonization of caves has developed over time, especially in caves from middle and low latitudes. Subtropical East Asia holds the world's largest karst landform with numerous ancient caves, which harbor a high diversity of cave-dwelling organisms and are regarded as a biodiversity hotspot. Here, we assess the temporal dynamics of biotic colonization of subtropical East Asian caves through a multi-taxon analysis with representatives of green plants, animals, and fungi. We then investigate the consequences of paleonviromental changes on the colonization dynamics of these caves in combination with reconstructions of vegetation, temperature, and precipitation. We discover that 88% of cave colonization events occurred after the Oligocene-Miocene boundary, and organisms from the surrounding forest were a major source for subtropical East Asian cave biodiversity. Biotic colonization of subtropical East Asian caves during the Neogene was subject to periods of acceleration and decrease, in conjunction with large-scale, seasonal climatic changes and evolution of local forests. This study highlights the long-term evolutionary interaction between surface and cave biotas; our climate-vegetation-relict model proposed for the subtropical East Asian cave biota may help explain the evolutionary origins of other mid-latitude subterranean biotas.


Assuntos
Biodiversidade , Cavernas , Florestas , Animais , Ásia Oriental , Filogenia
15.
Plants (Basel) ; 11(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35050043

RESUMO

The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated.

16.
Proc Biol Sci ; 289(1966): 20211308, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34982948

RESUMO

Ex situ origins and dispersal of taxa have played important roles in the assembly of island-like biodiversity hotspots. Insular limestone karsts in Southeast Asia are hotspots of biodiversity and endemism, but the immigration processes of their unique floras are still poorly known. Here, we used Gesneriaceae as a proxy to investigate the immigration dynamics of tropical and subtropical Southeast Asian karst floras. We present the most comprehensive phylogenetic analysis of the Old World gesneriads to date based on twelve loci. By estimating divergence times and reconstructing ancestral states (habitat, soil type and range), we found that immigration into subtropical Southeast Asian karst floras first occurred in the Early Miocene, with two peaks in the Early-Middle Miocene and the Pliocene-Early Pleistocene, whereas immigration into tropical Southeast Asian karsts initiated in the Late Eocene, with two peaks in the Late Oligocene and the Late Miocene. We also discover that Southeast Asian karst biodiversity comprises immigrant pre-adapted lineages and descendants from local acid soil ancestors, although niche shift from acid soil to karst in tropical Southeast Asian islands was lacking. This study advances our understanding of the historical assembly of Southeast Asian karst floras.


Assuntos
Carbonato de Cálcio , Emigração e Imigração , Biodiversidade , Filogenia , Filogeografia , Solo
17.
Front Plant Sci ; 12: 769246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868166

RESUMO

Petals, the inner organs in a differentiated perianth, generally play an important role in pollinator attraction. As such they exhibit an extraordinary diversity of shapes, sizes, and colors. Being involved in pollinator attraction and reward, they are privileged targets of evolution. The corolla of the Ranunculaceae species Nigella damascena consists of elaborate nectariferous petals, made of a stalk, upper, and lower lips forming a nectar pouch, shiny pseudonectaries, and pilose ears. While the main events of petal development are properly described, a few is known about the pattern of organ size and shape covariation and the cellular dynamics during development. In this study, we investigated the relationships between morphogenesis and growth of N. damascena petals using geometric morphometrics coupled with the study of cell characteristics. First, we found that petal shape and size dynamics are allometric during development and that their covariation suggests that petal shape change dynamics are exponentially slower than growth. We then found that cell proliferation is the major driver of shape patterning during development, while petal size dynamics are mostly driven by cell expansion. Our analyses provide a quantitative basis to characterize the relationships between shape, size, and cell characteristics during the development of an elaborate floral structure. Such studies lay the ground for future evo-devo investigations of the large morphological diversity observed in nectariferous structures, in Ranunculaceae and beyond.

18.
PhytoKeys ; 180: 81-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393579

RESUMO

Recent molecular phylogenetic studies have indicated that Aconitella is embedded in Consolida, which in turn is embedded in Delphinium. We choose not to split the genus Delphinium (c. 300 species), as it is horticulturally and pharmaceutically important, by conserving a broad Delphinium by transferring the names from Consolida and Aconitella to Delphinium s.lat., and more precisely in the resurrected D.subg.Consolida. Including 58 species of Aconitella and Consolida within Delphinium causes fewer nomenclatural overall changes than do alternative schemes because most of the species of Aconitella and Consolida were once named under the name Delphinium. We present here the list of synonyms for the species once named under Consolida or Aconitella and gather the information relative to the types of these names. Two new combinations are provided, and 21 lectotypes are designated here.

19.
Biol Rev Camb Philos Soc ; 96(4): 1676-1693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955646

RESUMO

The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.


Assuntos
Mimetismo Biológico , Eucariotos , Evolução Biológica , Cor , Fenótipo , Pigmentação
20.
Proc Biol Sci ; 288(1948): 20210281, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823668

RESUMO

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis, an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai-Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai-Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai-Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis, four vicariance events correlate well with the two early uplifts of the Qinghai-Tibetan Plateau during the Late Eocene and the Oligocene-Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


Assuntos
Ranunculaceae , Ásia , Irã (Geográfico) , Filogenia , Filogeografia , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...